
Tips and Tricks for 
Computational Savings

Soumadeep Saha



Contents
PART 1 - General Techniques

● Pruning.

● Distillation.

● Quantization.

PART 2 - Transformers

● Dealing with quadratic growth.

● Curse of parallelism - Linear 

Models.

● Input size issues.



PART 1

General Techniques



Pruning

Are all weights necessary?

2nd derivatives - Hessians



Distillation

Smaller network trained on 
outputs from a larger network.

E.g. DistilBert
0.6x size | 0.95x performance



Quantization

Reduce number of bits per 
parameter - saves memory 
and compute.

Done in chunks to avoid 
outliers.

FP32 <-> Int8 [-127,127]



PART 2

Transformers



Quadratic Growth

PROBLEM!



Quadratic Growth

PROBLEM!

Replace softmax of cosine similarity with locality 
sensitive hashing algorithms. 

-> Reformer architecture.



Quadratic Growth



Parallelism - Recall…

The quick brown fox jumps over the lazy dog.



Parallelism - Softmax begone!

But we lose the powerful non-linearity



Other input size issues…

Long input sizes take a lot of 
memory & compute time…

But, they also maybe out of 
distribution!

Recall…

Fine-tuning + Linear Interpolation



Key takeaways

● General compression techniques like distillation, 
quantization, etc are helpful in this context.

● Quadratic growth in time - LSH.
● Parallelism requires a lot of memory - Linear attention.
● Position embeddings may be OOD.


