
Adapting LLMs for you

Soumadeep Saha

Contents PART 1 - Prompting

● What is it?
● Common techniques
● Best practices

PART 2 - Fine-tuning

● When and how?
● Instruct Models
● LORA

PART 1

Prompting

What is prompting?

Prompting
techniques

● Zero-shot

● Few-shot

● Critiquing

● Program Synthesis

● Chain-of-thought

● CoT-SC

● Tree-of-thought

● …

Zero Shot

“A client (@name) is contacting us because something went wrong. You must
act as a friendly agent in charge of collecting a clear idea of what went
wrong with the order, you need to ask them. We know there was an issue but
we need to know what it was, so you need to find out. Also, get their
email address and order number (don't show the summary to the user and do
not create any info.) Ask only one question at a time and be friendly.
Your job is not to give support, only to collect the information. Don’t
create any information, it must be given by the client. Here's your
conversation history with the client: @conversation_history. Once you've
gathered all three pieces of information from the client and they no
longer need help say ‘An agent will look into this’, be sure to use the
keywords ‘An agent will look into this’ only when you have a clear summary
of the issue (at least one sentence from the user), an order number, and
an email address and the client no longer needs help. Client: @user_text.
You: \n"

“Assistant is a large language model trained by OpenAI. knowledge
cutoff: 2021-09 Current date: December 04 2022 Browsing: disabled”

Few Shot Prompting

This is awesome! // Negative
This is bad! // Positive
Wow that movie was rad! // Positive
What a horrible show! //

Provide a few solved examples.
Number of examples is dependent on task complexity.

>>> Negative

Few Shot
Prompting

Critiquing

Program Synthesis

Write a program to
generate the required
output which can be
run with an interpreter.

MBPP performance.

Chain of Thought Prompting

Provide a
detailed
worked out
example.

Chain of Thought Prompting - Self Consistency

Sample multiple outputs with
CoT and reduce by majority
voting.

Self improvement

- CoT+ SC + Fine-tune

Tree of Thought Prompting

Bob is in the living room. He walks to the kitchen, carrying a
cup. He puts a ball in the cup and carries the cup to the
bedroom. He turns the cup upside down, then walks to the
garden. He puts the cup down in the garden, then walks to the
garage.
Where is the ball?

Imagine three different experts are answering this
question.

All experts will write down 1 step of their thinking,
then share it with the group.

Then all experts will go on to the next step, etc.
If any expert realises they're wrong at any point then

they leave.
The question is...

Tree of Thought Prompting

Tree of Thought Prompting

Expert 1: The ball is in the bedroom.
Expert 2: The ball is in the garage.
Expert 3: The ball is in the cup.
Expert 1: Since Bob turned the cup upside down and walked to the
garden, the ball is still in the bedroom.
Expert 2: Since Bob walked to the garage after putting the cup
down in the garden, the ball must be in the garage.
Expert 3: Since Bob put the ball in the cup and carried the cup
to the bedroom, the ball must be in the bedroom.
Expert 2: I was wrong. The ball is in the bedroom.
Expert 1: I agree. The ball is in the bedroom.
Expert 3: I agree. The ball is in the bedroom.
Conclusion: The ball is in the bedroom.

Tree of Thought

● Decompose (as in CoT)

● Thought Generate

○ Sample next thought from CoT

○ Propose entire thought chain

● State evaluator - use LLM to value/vote

● Search algorithm

Prompting strategies

Prompt tuning

Tune the word embeddings associated with the prompt tokens.

Works with less data, many task specific prompts can be generated.

Prompt tuning (PEFT)

Special token like [CLS],[PAD], {EOS], etc

[[PROMPT1], [PROMPT2], …, [BOS], w_1, …
[EOS], [PAD], …]

Train on the task at hand, freeze everything else.

PART 2

Fine-tuning

What is it?

When and how?

● Typically the same process.
● Training samples are much lower in number.
● Typically higher quality.
● Learning rate and number of iterations much lower.
● Distribution shift must not be too huge.
● All or a subset of parameters can be re-trained.
● Base-case (0th) : “linear probing”
● E.g. Robustness - adversarial fine-tuning

Instruct Models

Addresses misalignment problem.

1 - “Predict next likely word to appear on the web”

2 - “Provide helpful and accurate information
without being toxic”

RLHF fine-tuning to follow instructions.

LORA - Fine-tuning is expensive!

● Compute expensive - LLaMa - 1,720,320 GPU hours.
● Memory expensive - LLaMa - 130 GB in 16 bit.
● Fractured landscape with several models - can’t choose

special models at inference time.

LORA to the rescue!

NLP Models have low intrinsic dimensionality

Pre-training and fine-tuning reduces model dimensionality closer to intrinsic dimensionality.

LORA Module

LORA - LOw Rank Adaptation

LORA - LOw Rank Adaptation

● Decreased compute with almost same performance.
● Much smaller size (10,000x decrease in checkpoint, 4x

decrease in VRAM).
● Can have various “flavours” of LFMs.
● Switch at inference time.
● No inference penalty - can be fused.

Q-LORA : LORA but quantized

[-1.0, -0.696, -0.525, -0.394, -0.284, -0.184, -0.091, 0.0, 0.079, 0.160, 0.246, 0.337, 0.440, 0.562, 0.722, 1.0]

Doubly quantized! - De-quantize only when needed for forward, backward pass.

Key Concepts

● Several prompting techniques.
● Roughly in order of “power”.
● Prompt tuning - compromise.
● Fine-tuning.
● LORA, Q-LORA

