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Abstract

With the advent of deep learning we have pushed the boundaries of what was compu-

tationally possible, and have made significant impacts in other fields as wide ranging

as high energy physics to medicine. Certain technologies which were once considered a

science fiction fever dream are commonplace, and we are certainly far from unlocking its

full potential. It is now possible for a computer to analyze an MRI without the aid of a

doctor, and futurists predict that cars will drive themselves in the coming decades.

However there are some looming issues which we need to resolve before we can realize

our utopic visions. One of these problems is the black box nature of the algorithms.

Since, we don’t really know what is going on under the hood, we cannot infer causal

relationships, which is of critical importance in certain applications.

Another problem that is pervasive, is that of adversarial attacks. They were first

discovered by Szegedy et al. [51] in 2014 and have since become much more sophisticated

and has been extended to every kind of architecture imaginable. An adversarial attack is

when an adversary makes unnoticeable changes to the input, to drastically change the

output of the deep learning network, often being able to choose the output in question.

The prevalence of these attacks in almost all networks, and oftentimes their transferability

suggests an underlying problem with how the system "learns". This learning problem

and various ways to address it forms the subject matter of this dissertation.

We will first be looking at cryptographic approach to solving this issue. If we can

somehow perform computations on the input and produce the desired result wherein we

can mathematically guarantee no one knows the intermediate steps, our adversary will be

greatly impeded in their efforts. This also has potential additional benefits such as access
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Abstract

control, safety, etc. However, we have found that, the cryptographic approaches, when

possible at all, are limited by the raw computational capacity of our times, rendering

them ineffective.

One idea proposed by Szegedy et al. [51] has showed promise in solving the adversarial

attack problem, wherein we generate adversarial data and train our networks on adver-

sarial examples in addition to samples from the input space. This "adversarial training"

paradigm has been shown to be at odds with the accuracy of deep networks, and some

have gone so far as to claim that this is an inevitability [47].

However, upon exploration of several architectures and their behavior under adversarial

training we are led to the following hypothesis. A deep network has a finite capacity

to learn, and if we wish to adversarially train a network i.e. make it more robust

while maintaining accuracy we have to increase its capacity to learn (by adding more

parameters, increasing depth. etc). We have found some evidence in support of this

hypothesis, and it opens up many possible avenues of inquiry in the future.
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1 Introduction

In this chapter we will briefly trace the history of deep learning, give a short introduction

on the basics of the topic, and then discuss the problem at hand in greater detail.

1.1 The lay of the land

1.1.1 History

As computational prowess grew back from the days of vacuum tubes we have been finding

more complicated problems for computers to solve. In 1949 John von Neumann suggested

that the ENIAC be used to calculate the decimal expansion of π [41]. The computer

calculated over 2000 digits over a weekend far out-passing anything a human might have

hoped to achieve. Very soon everything involving numerical computation was handled

by machines, and we started looking for more interesting problem for computers to solve.

Our first instinct was to look for problems which we typically associate with the smartest

of people. The poster child for exhibiting reasoning prowess became chess.

Big names in computation attacked this problem, including the likes of Alan Turing.

By the late 1950s algorithms that could play chess were developed, but they were limited

by hardware capabilities. By May 1997 Deep Blue had beaten the chess grand master

Gary Kasparov. This historic event took place well over two decades ago. So where are

the AI supercomputers that were promised?

It turns out that chess is only a hard problem to solve for humans, who are limited

by computational and memory capacity. Chess is a rule based Markovian game where

the next move can be calculated without knowledge of the history. Soon heuristics were

1



1 Introduction

developed that could assign scores to states of a chess board. Then it became a problem

of tree traversal. Each possible move creates a branch in our decision tree and since the

states can be numerically evaluated the problem turned into one of maximizing your

score while minimizing your opponents. Today chess engines are so powerful that a grand

master is akin to a complete beginner when compared with it.

So chess wasn’t as difficult a problem to solve as was originally thought. This is

indicative of the nature of progress in AI, whenever a problem initially thought of as

’intelligent’ is solved, the goalpost is moved to harder problems. However, difficult

problems are a dime a dozen.

Some of these problems appear to be related. We as humans can solve certain problems

instinctively without even thinking about it. Like listening to someone speak and knowing

what they mean, or looking at a picture and recognizing objects in it. These problems as

it turns out are much harder to solve for computers. Some of the reasons are as follows.

• Solutions are context dependent and depend on a vague understanding we have.

For example a hot beverage and a hot day both have the same adjective but mean

wildly different temperatures.

• Either do not have well defined rules or have so many that it would be impossible

to note down in a case by case basis. For example if we ask the question, "Does

this picture have a bird in it?", our rule set would have to have enormous size.

Penguins, ostriches and sparrows look very different but are all birds. Are figurines

of birds, birds?

• Often have high level abstract details we do not fully understand. For example,

how do you explain to a machine what sarcasm is?

Rosenblatt [42] is credited with coming up with the perceptron, which when put

together with the back propagation algorithm [53] serves as the building blocks of the

field of deep learning. However, two other advances would be required before they would

prove to be ubiquitously useful like it is today. The first is the increase in computational

2



1 Introduction

prowess through faster processors and numerous cores working in parallel. The second

and perhaps more important advancement was our access to datasets of astronomical

sizes.

Today we use deep learning to attack a diverse set of problems, including those

mentioned above. Deep learning is best understood as methods to find complex non-

linear functions to fit our data by optimizing an error function. We hoped a structure

like this would work as it was modeled based on our understanding of how human brains

work. This is why these techniques are often labelled as Artificial Neural Networks.

1.1.2 Successes

Deep learning has had major successes in recent times. Almost all state of the art

computer vision technologies use deep learning today. Major strides have been made in

the field of natural language processing using deep learning, and tasks like translation,

captioning, etc are routinely automated, and they even outperform humans at certain

tasks. Networks have been trained to draw in the style of Picasso [13] or compose like

Chopin [39]. A certain medical study found that it could predict whether a person was a

smoker or not based on retinal images [59]. Particle accelerators and astronomers heavily

rely on deep learning to analyze their data.

Many applications have trickled down to the average consumer. The "face-unlock"

feature found on most smartphones today are based on CNN-feature extractors 1. Sev-

eral companies have launched pilot programmes testing the feasibility of completely

autonomous vehicles.

However these problems are still tractable in some sense, where we might not be able

to exactly define a solution but we know a solution when we see one. This is the regime

of supervised learning wherein we have labeled datasets and we try and discover an

underlying relationship which is hopefully indicative of the whole input space. There are

certain sets of problems where that is not the case. For instance, we don’t know what the

best space station design is. This class of problems where we wouldn’t know a solution

1the technology is proprietary in most cases, but this is the best educated guess
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1 Introduction

even if we stumbled upon it somehow is much more challenging. Deep learning is helping

push the boundary in this class of problems too, by modelling the often complicated

action→ reward function [8]. We have recently seen Alpha-Zero beat the best human

players at Go without any information save for the rules of the game [49].

1.1.3 Challenges

In spite of all its successes, there are a few major problems that require addressing

to push the field further. One of the problems is that causality is near impossible to

establish. The models used are of the "black box" kind. So, after we get a prediction

from a model we cannot answer the question why the model made the prediction it did.

The other looming issue is that of adversarial attacks, which is the focus of this work,

and we will be talking about it in much greater detail in the coming sections.

1.2 What is machine learning?

Machine learning is a collection of algorithms and statistical models that computer

systems use to perform a specific task without using explicit instructions, relying on

patterns and inference instead. It is seen as a subset of artificial intelligence. Machine

learning algorithms build a mathematical model based on sample data, known as "training

data", in order to make predictions or decisions without being explicitly programmed to

perform the task.

Machine learning is a broad umbrella term, which encompasses several algorithms and

techniques, ranging from simple linear regression models, nearest neighbor algorithms,

SVM, random forests, and artificial neural networks. Artificial neural networks in

conjunction with big data (large data sets) broadly speaking constitutes deep learning.

We will discuss deep learning briefly before we introduce the learning problem.

4



1 Introduction

1.2.1 Deep Learning

Simple models like k Nearest Neighbors, Random forests or Support Vector Machines are

reliant on a domain expert designing the data set. For example, we might want to predict

the chance of heart disease given someone’s age, weight, height and blood cholesterol

level (features). We could start from the labelled data set and infer the relationship

between those factors and heart disease. But how do we know we ought to concentrate

on these factors, and not, for example hair color? These algorithms therefore require

that the data be curated by domain experts. Often domain experts are not available.

Often the feature set is subjective. Sometimes higher level abstract details are present

which the domain experts don’t even know to look for (as in the medical study mentioned

above)[59].

This is where deep learning shines. When we have a vast quantity of raw (labelled or

unlabeled) data and we can train a model on it without first deciding which features of

the data is important or should be focused on. We hope that with enough examples the

system will learn to discriminate the important from the unimportant and produce the

desired result.

Deep learning has three major parts , the artificial neural network, the data, and the

training algorithm.

An artificial neural network is a network of stacked "perceptrons". Perceptrons are

the parallels of individual neurons. They have an activation represented by a continuous

number (sometimes between 0 and 1) which depends on the activations of the perceptrons

connected to it. This is denoted as

a
(n)
i = W n,n−1

ik a
(n−1)
k + b

(n)
i

Where a(0) is the input and a(n) is the nth layer activation. W (n)
ij , b(n) are the weights
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1 Introduction

Figure 1.1: Artificial Neural Network [Source : Wikipedia]

and biases which are learned.
Algorithm 1: Back Propagation Algorithm

(xi, yi) ∈ D is the data ;

η is the learning rate ;

fθj is the network with parameters θj ;

`←∞ , j ← 0;

while ` > β do

Calculate fθj(xi) ;

`← `(fθj(xi), yi) ;

δ ← ∇θj` # using chain rule ;

θj+1 ← θj − η · δ #update parameters ;

j ← j + 1 ;

end

The training protocol is described in Algorithm 1. ` is a loss function, it can be as

simple as a `2-norm of the calculated vs expected output, or could be a probabilistic

6



1 Introduction

measure. After sufficiently many iterations, the loss of the network decreases and it

gets better at predicting the output given an input. η is called learning rate and is a

hyper-parameter describing the how big the step size is in the gradient descent step. β is

an arbitrarily chosen stopping point. Generally, the inputs are split into batches so that

the gradient step is not sensitive to each input.

CNN feature extractor

CNN stands for Convolutional Neural Networks. This is a special type of neural network

specifically suited for images, where in each layer, the neurons of that layer are only locally

connected (spatially) to the layers before it. Formally, we perform kernel convolutions

with several filters (the specifics of the filter is learnt), each producing a version of the

image (feature map) with specific features highlighted. Many such layers are stacked, so

that more complicated patterns can be picked up on by the network. In between the

Convolutional layers we have pooling layers which down sample the feature maps.

Thus, at the end of the CNN we have a set of hundreds of smaller images which only

highlight the key features (see Figure 1.2). These can then be fed through a standard

fully connected network, for classification related tasks or the features can be used to

train networks for a wide array of tasks involving images, where these CNN features

serves as a more useful embedding of the information in the image.

Figure 1.2: CNN [Source : towardsdatascience.com]

7



1 Introduction

LSTM Cell

The basic premise of Recurrent Neural Networks is that standard deep neural

network architectures are incapable of handling sequence/time series data. RNNs solve

this problem by defining a deep neural network which has some notion of memory, which

is a function of its previous inputs. Mathematically we have

ht = fW (ht−1, xt)

yt = gW̃ (ht)
(1.1)

Here, xt, yt is the input and output at time t respectively. ht represents the network

Figure 1.3: LSTM Cell [Source : Blog by Christopher Olah]

memory, and fW , gW̃ are learned functions with parameter set W, W̃ respectively.

These networks are notoriously hard to train, because they require long sequences

of back propagation through time, and normally a finite truncated version of back

propagation through time is used.

Additionally, they have an exploding/vanishing gradient issue. LSTM (Long Short

Term Memory Networks) were proposed in 1997 [21] in an effort to fix this issue with

RNNs. The function fW is usually a series of matrix multiplications, and while back

propagating gradients, multiplying the gradients by the same matrix several times usually

8
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leads to the gradients either growing or shrinking exponentially. To address this issue in

particular, a shortcut path is added in LSTM (see Figure 1.3) for the memory, so that

they aren’t subjected to repeated multiplication.


i

f

o

g

 =


σ

σ

σ

tanh

×W
ht−1

xt



ct = f · ct−1 + i · g

ht = o · tanh(ct)

yt = ỹw(ht)

(1.2)

i, f, o, g are vectors called input, forget, output, gate respectively. The input and ’gate’

vectors learns to decide how much of the input to take into consideration, the forget

gate learns how much of the current memory to forget, and the output gate learns how

much of the memory is to be exposed to the output. The control ct avoids the problem

of repeated multiplication in this architecture.

These networks are used to either embed knowledge about sequences into vectors (as

in describing the quality of a sentence), turn embedded knowledge vectors into sequences

(as in image captioning), or map sequences to sequences (as in translation).

1.3 Adversarial Attacks

It has been shown that imperceptible perturbations can be added to inputs to make the

output of the deep learning system drastically different, and these perturbations can often

be calculated to produce the adversary’s desired output (see Figure 1.4). These attacks

have been performed on a huge array of networks and have a near perfect accuracy (see

Figure 1.5) [6].

Just as we can adjust the values of the parameters based on the derivatives of the loss

9
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Figure 1.4: An adversarial input, overlaid on a typical image, can cause a classifier to
miscategorize a panda as a gibbon. [Source : Goodfellow et al. [14] ]

function we can rather fix the parameters and compute the derivative of the loss with

respect to the input. If we intentionally change the input in this manner to get a desired

erroneous output, we can often get the desired output with imperceptible tweaks to the

input. (see Figure 1.4). This is the idea behind most of the popular attack algorithms in

use today [14].

Figure 1.5: Adversarial attacks on common systems [Source : Chaturvedi et al. [6]]

This points to the existence of some fundamental underlying problems with the way

10
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we do deep learning. It does not learn in the same sense as humans do.

Figure 1.6: An adversarially tampered stop sign being misclassified. [Source : Eykholt et
al. 2018 [12]]

This is a big problem when it comes to the widespread adopt-ability of deep learning

techniques. What if an adversary could inject perturbations in a presidential speech,

such that when translated by a deep network, would lead to tumult? What if someone

could place a sticker on a stop sign, thus making it effectively invisible to the cameras

of an autonomous vehicle (see figure 1.6)? This problem might have several unforeseen,

and far reaching deleterious consequences.

11



2 Adversarial Attacks

In this section we will go over the basics of adversarial attacks (in the context of deep

learning networks), look at specific strategies that show promise and finally look at some

of the solutions to this problem that have been proposed in the literature.

2.1 What are adversarial attacks?

Let us consider a deep learning network as a function f that takes in input xi ∈ X and

produces corresponding output yi ∈ Y . It has several internal parameters like weights,

biases, etc denoted together with the set θ ∈ Θ (Θ is the space of all possible parameter

values). We are optimizing on a loss function ` which tells us how accurate our prediction

is at the current time.

fθ : X → Y

xi 7→ yi

(2.1)

In this context the goal of the training procedure is

argmin
θ∈Θ

`(fθ(xi), yi) ∀i (2.2)

This is in general achieved by the following protocol

θn = θn−1 − η · ∇θn−1`(fθ(xi), yi) (2.3)

12



2 Adversarial Attacks

Where η is a hyper-parameter, called the learning rate. The gradients are usually

computed analytically with an algorithm known as backpropagation.

The goal of an adversarial attack then is to find a perturbation δ such that

fθ(xi + δ) 6= yi (2.4)

There are several ways to go about this and we will discuss them in the coming sections.

2.1.1 Targeted vs Non-Targeted

In a targeted attack the adversary chooses the desired incorrect output, i.e. a y′i 6= yi is

chosen and the aim of the adversary is to

argmin
δ

`(fθ(xi + δ), y′i) (2.5)

Additionally the secondary goal is to minimize the adversarial perturbation δ. The

attack is said to be successful when f(xi + δ) = y′i 6= yi. Typically this type of attack is

harder than the non-targeted variant.

In a non-targeted attack the adversary just seeks to change the output from the

correct behavior, i.e.

argmax
δ

`(fθ(xi + δ), yi) (2.6)

The attack is said to be successful when f(xi + δ) 6= yi. Contrast this to equation 2.2.

This min-max game is central to some of the defense strategies.

2.1.2 Blackbox vs Whitebox

In a blackbox type attack the adversary has no information about the internal network

in question save for an oracle like access to the network. The adversary may have access

to the dataset upon which the network it was trained or it may not.

In a whitebox attack the adversary has full information about the internal network,

13



2 Adversarial Attacks

including the network topology, the parameter values, training data, training procedure,

etc. This type of attack is easier, and we will go over popular strategies used in section

2.2.

However even in the blackbox case all hope is not lost. Generally an effective strategy

is to first approximate the behavior of the network being attacked, i.e. the adversary

finds f ′, θ′ such that

argmin
θ′,f ′

`(fθ(xi), f
′
θ′(xi)) ∀xi ∈ X (2.7)

After having trained a proxy network to closely approximate the behavior of the

original network the problem reduces to the whitebox kind. There is a small caveat

however, in this scenario we expect that when a suitable adversarial perturbation δ is

found for f ′θ′ , xi it will also be a valid adversarial perturbation for fθ, xi (Rozsa et al.

[44]). There is no known reason as to why this is true, however Goodfellow et al. noted

this might be due to the high dimensionality of the spaces of adversarial examples [14].

In the previous case we assumed no knowledge about the network f save for an oracle

like access. However we assumed full knowledge about the training dataset xi ∈ X.

What if that is not the case? In this situation where even the training data is not known,

significant headway can be made.

The first step is to make a discriminator network D. The job of the discriminator

network is to look at the output from the target network f for a candidate dataset X̃

and determine whether it was from the original dataset X or not, i.e.

D(f(x̃i)) =

1 if x̃i ∈ X

0 otherwise
(2.8)

This is usually possible with techniques from unsupervised learning. Following this step

we can make a proxy dataset X ′ = {x̃i|D(f(x̃i)) = 1}. Once we have the proxy dataset

we can train a proxy network f ′ on X ′ and exploit the transferability of attacks to find

adversarial examples for f .

So, fundamentally in blackbox attacks we use the oracle like access to the network to

14



2 Adversarial Attacks

approximate all the information about the network in question. After the approximation

step is completed, attack can proceed exactly as in the whitebox case. Keeping this in

mind, we will only talk about whitebox attacks in what proceeds.1

2.2 Popular Paradigms

We have talked about the goal our adversary has in the preceding section. However, we

have said nothing about how an adversary might go about achieving these goals. In this

section we will lay out the fundamental attack strategies.

Ironically, the same tool which makes deep learning possible also makes it possible

to generate adversarial examples. In the training phase, we use the gradients of the

loss with respect to the parameters to take a step towards a local minima of the loss

landscape. Instead, we could fix the parameters and take the gradient of an adversarial

loss with respect to the input, and thus find out how to nudge the input so as to produce

an adversarial input.

2.2.1 L-BFGS

The earliest proposed method for adversarial attack, suggested by Szegedy et al. hinged

on the Limited memory BFGS algorithm 2[51]. It is a quasi Newtonian iterative method

for solving non-linear optimization problems. As we have discussed earlier, the adversary

seeks to find r such that,

f(xi + r) = l 6= yi (2.9)

It is easy to see how a root finding algorithm can be used to tackle this problem.

However, this method is rather computationally inefficient and isn’t widely used in

practice.

1There are other forms of attacks which tamper with the training dataset in question to engineer
desired erroneous behavior as in [50]. However, we will not discuss them here as they are not relevant
to our work. We will assume the datasets used in training are outside the control of the adversary.

2BFGS is an abbreviation for Broyden-Fletcher-Goldfarb-Shanno the creators of the algorithm.
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2.2.2 FGSM

FGSM stands for Fast Gradient Sign Method and was suggested by Goodfellow et. al. in

2014 [14]. This method directly relies on back propagating the gradients of the loss with

respect to the input, and taking one large step in that direction to increase the loss.

xadv
i = xi + ε · sign(∇xi`(fθ(xi), yi)) in the non-targetted case. (2.10)

xadv
i = xi − ε · sign(∇xi`(fθ(xi), y

′
i)) y′i 6= yi in the targetted case. (2.11)

The ε serves to keep the adversarial perturbation defined by δ = sign(∇xi`(fθ(xi), yi))

bounded in a L∞ norm. We could instead take a gradient step and project it onto a Lp

ball to get the projected fast-gradient sign method.

δ = ε · ∇xi`(fθ(xi), yi)

‖∇xi`(fθ(xi), yi)‖p
(2.12)

2.2.3 Basic Iterative Methods

The FGSM algorithm outlined above is a one step attack. This can be iterated to increase

the loss even further and increase the chances for a successful adversarial attack. This is

represented as :

xn+1
i = Clipε

(
xni + α · ∇xi`(fθ(xi), yi)

)
; x0

i = xi (2.13)

And, as before, the targeted version of this, known as the Iterative Least likely

Class Method (ILCM) and was suggested by Kurakin et al. [26].

xn+1
i = Clipε

(
xni − α · ∇xi`(fθ(xi), y

′
i)
)
; x0

i = xi (2.14)

The step-size α is a hyper-parameter and the Clip function keeps the adversarial

perturbation inside a ε-ball under L∞ norm.

Just as in the one step attack case, we can have a Lp bounded adversary. This

attack method is called the Projected Gradient Descent Algorithm (PGD) and
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is a common algorithm in convex optimization. The fact that BIM was the L∞ version

of PGD was pointed out by Madry et al. [33].

xn+1
i = Πε

(
xni + α · ∇xi`(fθ(xi), yi)

)
; x0

i = xi (2.15)

Here Π is the projection map onto a ε-ball under Lp norm.

2.2.4 Other attack paradigms

Several other attack paradigms have been suggested in literature. One interesting set of

attacks are L0 bounded attack. In this type of attack only a few dimensions of the input

is changed. Papernot et al. [38] came up with Jacobian-based Saliency Map Attack

(JSMA). In this attack one pixel of the input was changed at a time and a saliency map

was created using the gradients of the outputs of the network layers. Following this only

those pixels were changed which would result in a maximal change of the output. This

process is iterated until the allowed number of pixels have been changed or the attack

was successful.

Su et al. extended this work further by creating one pixel attacks which were up to

70.97% successful in fooling three different network models, by altering just one pixel in

the input. They used evolutionary algorithms to generate the adversarial input.

Other attacks suggested by Carlini and Wagner [4] came up with algorithms that

bound the perturbations under L∞,L2, and L0 norms simultaneously making them nearly

imperceptible. These attacks are widely successful even in cases where precautions3 have

been taken to prevent adversarial attacks.

Several other attack paradigms have been proposed in literature, spanning a diverse

set of techniques, like using adversarial nets, optimizing over specially manufactured

loss functions, etc. We shall not go into detail on all such techniques, and we direct the

reader to [1] for a summary.

3Defensive distillation
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2.2.5 GANs

Generative Adversarial Network (GAN) is one area in which techniques from

adversarial networks have seen practical use in a non-adversarial context. Goodfellow et

al. [15] suggested using two networks G (the generator) and D (the discriminator) be

trained simultaneously in an adversarial fashion.

The job of the discriminator is to take in either the output from the generator or from

the underlying dataset and output a single number in [0, 1] denoting the probability

that the input is from the dataset and not the generator. The generator on the other

hand takes in noise as input and spits out a result, which tries to emulate the underlying

dataset. It is trained to fool the discriminator.

Thus the two networks are in a two player min-max game. Training is completed when

the discriminator gives a output of 1
2
for all outputs of the generator. The two player

value function is given as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.16)

After training is completed the discriminator is thrown out, and the generator is used

to create data that resembles the dataset in question.

These techniques are often extended for use in generating adversarial examples. One

such technique is the UPSET network proposed by Sarkar et al. [46]

2.3 Defenses

There are three broad strategies [1] which are used to defend against adversarial attacks.

• Modified training procedures, or modifying training inputs.

• Modifying networks to suppress attacks.

• Using add on components to detect and suppress attacks.
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We will go over each of these paradigms briefly in what follows.

2.3.1 Modifying Networks

If one were to make an educated first guess in order to combat adversarial perturbations,

one would think to include some sort of a De-noising operation to the input to suppress

adversarial artifacts. However, if the adversary is aware of this, it will almost invariably

fail to have any effect. Most approaches that do work in practice also involve using

additional train-able components in the network.

Gu and Rigazio introduced Deep Contractive Networks [16] to address the ad-

versarial attack problem by adding an auto-encoder to suppress attack artifacts. An

auto-encoder is a system of two networks, one designed to compress the input data into

a lower dimensional latent space, and the other to recreate the original input from the

compressed data. Upon training we hope that the network learns some of the underlying

relationships or structures that helps it store the information in a lower dimensional

space and recreate it losslessly, as illustrated in Figure 2.1.

Figure 2.1: Auto-Encoder [Source : towardsdatascience.com]
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However it was soon discovered that if the adversary uses the auto-encoder information

to inform his attack, that is attack the entire model end-to-end, it actually makes it even

more vulnerable to adversarial perturbations.

Since adversarial attacks are reliant on the gradients with respect to the inputs, many

defense strategies make attempts to suppress artifacts in the gradients. This is sometimes

done using gradient regularisation wherein large gradients with respect to the input

is penalized as part of the training procedure (as in Ross and Doshi-Velez [43]). It was

shown that this method when combined with adversarial training is reasonably robust.

Similar attempts by Nguyen and Sinha [36] introduced a masking based defense against

C & W attacks by adding noise to the logit output. Other similar approaches include

[48] [32].

Defensive distillation was suggested by Papernot et al. [37] where they trained

a preliminary model using (input,label) pairs, following which they trained a second

network on the class probabilities output by the first network. This process of distillation

is usually done to transfer the properties of large networks to smaller networks which

can be used on smaller resource restricted networks, such as smartphones.

Papernot et al. showed its efficacy in deflecting small adversarial perturbations [37].

They essentially exploited the knowledge extracted from the network to make itself more

robust. However, they have been shown to be vulnerable to C & W attacks [4].

There are several other approaches that follow this general procedure, each with limited

effectiveness or limited in types of attacks they can repel.

One interesting approach we will talk about in greater detail is feature denoising.

This is a technique usually applied to image processing networks, in particular the

ResNet152 Denoise model [55] (see figure 2.2 for an illustration of the architecture of

ResNets [19]) introduced by Xie et al.

ResNets are different from other deep convolutional neural networks, as they employ

residual connections between layers. Normally, very deep neural networks when being

trained through back-propagation gives vanishingly small gradients for layers near the

input. Having these residual connections gives a shortcut path for gradients to flow to
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the early layers, thus allowing ResNets to be much deeper than other architectures. They

also have shallow fully connected layers close to the outputs opting instead to rely on

feature maps, and pooling. This helps keep the number of parameters smaller, as most

of the parameters in deep CNNs are dedicated to the fully connected layers.

Figure 2.2: Design of ResNet a deep convolutional neural network with residual connec-
tions compared to other state of the art deep learning networks. [Source :
towardsdatascience.com]

The guiding principle is that adversarial noise added to the input results in noisy

features in the intermediate layers. Thus the authors introduced intermediate layers

(see figure 2.3) which denoise these intermediate features with non-local means or other

filters. Non local means denoise a feature map by taking a weighted mean of features in

all spatial location.

yi =
1

C(x)

∑
∀j∈L

f(xi, xj) · xj (2.17)

Here C(x) is a normalizing factor and f(xi, xj) is a feature dependent weighting

function. The authors noted that the best performing weighting function was a Gaussian,

defined as

f(xi, xj) = exp
( 1√

d
· θ(xi)Tφ(xj)

)
(2.18)

Here d is the number of channels, and θ,φ are two embeddings learned by the network
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Figure 2.3: De-noising blocks. [Source : Xie et al. [55]]

during training.

This approach, in combination with adversarial training, (see section 2.3.3) demon-

strated good robustness. We will discuss these results further in chapter 4.

2.3.2 Add-on Techniques

Techniques in this category are reliant on training additional networks whose only task

is to deal with adversarial examples. Some methods are detection only, they only

raise an alarm if an adversarial example is encountered, other methods train networks to

suppress adversarial perturbations. Their outputs are then fed to the main network to

repel attacks. Some use GAN like techniques as proposed by Lee et al. in [29]. They

proposed training a generator whose job is to generate adversarial perturbations alongside

the network.

Another technique proposed by Xu et al. [57] called feature squeezing compares the

result of a manipulated (smoothed, etc) input with the actual input and flags it when

there is a discrepancy. Others (Meng et al. [34]) proposed training additional networks

whose job is to discriminate between adversarial and real inputs. Most of these networks

however depend on additional deep learning networks which are themselves vulnerable to
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adversarial attacks. Detection only methods are somewhat safe in this regard, but their

utility is limited. We would like the networks to work despite the presence of adversarial

perturbations, not refuse to work altogether when faced with an adversary.

2.3.3 Modifying Training or Inputs

Several methods of defense has been proposed in the literature following this paradigm.

Some of these include data compression (as in [11] Dziugaite et al.) who suggested using

JPEG compression. Other compression, low-pass filter, etc methods have been suggested,

but they are not resilient against sophisticated attacks.

Another novel approach was a foveation based defense suggested by Luo et al.[31].

They exploited the scale and translation symmetries to come up with an attack detection

strategy. Random resizing of the input (Xie et al [54]) was also shown to have some

success.

Adversarial Training

This is a defense strategy that has arguably seen the most success ([33] [14] [51] ), and there

is consensus in the literature regarding its efficacy. The strategy is simple, after an initial

preliminary phase of training, we attack the network and generate adversarial examples.

We then use these adversarial examples to retrain the network. We cyclically keep

generating and training on adversarial examples until a satisfactory level of robustness

has been achieved.

These methods are computationally expensive and require thousands of iterations of

strong attacks. However they are very versatile, and can be extended to most types of

attacks. Additionally, this can be used in combination with other methods mentioned

earlier to bolster their effectiveness [55]. These methods are by no means completely

resistant to attacks, but the attacks normally require significantly higher amounts of

noise and have to be more computationally expensive. However, there is a caveat; it was

observed in literature that there is a trade-off between accuracy and robustness in deep

learning networks, which is the subject of Chapter 4.
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We have seen the pervasiveness of adversarial attacks in the previous chapter. Our

first approach at addressing this issue involved tools from cryptography. The basic idea

is to encrypt the network, so that an adversary cannot use straightforward whitebox

adversarial attacks.

This does not solve the underlying learning problem though, because if an adversary

somehow does manage to get their hands on the network then they are free to generate

adversarial examples. However this approach comes with some benefits. One of the huge

hurdles to applying machine learning techniques to the medical field is the confidentiality

of medical records. If we could somehow deploy machine learning algorithms on encrypted

data this would open up several new possibilities in the field of medicine. This approach

however has many limitations, as we will see in the coming sections.

We can not use straightforward encryption to pass the necessary data of the weights,

biases, topology and other aspects of the network to our intended recipient as that

requires decryption before the network can be used. Once decrypted the network is

vulnerable and this approach puts the burden of security on the users. If the intended

user can generate inferences without having to decrypt the network first, then even if an

adversary gets hold of the network, white-box attacks become impossible. Often deep

learning networks are deployed in autonomous systems which can be tampered with by

an adversary. If the network could be deployed in an encrypted state, the tampering

would be fruitless.

The design of full solution is broken into three parts, encrypting the network, encrypting

the data and finally putting it together.
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3.1 Protecting the Network

We want a way to encrypt the data in a neural network such that it can be used without

decrypting it first.

This has some potential side benefits. Training a neural network requires valuable

resources, including computer time and huge labeled data sets. Thus limiting access to

certain users can be beneficial. Often it is dangerous to distribute a network, as was

demonstrated in a recent case, where a neural network that generates fake news articles

which are almost indistinguishable from real ones[60], was not made available during

publication. Since the potential for misuse is huge, the distribution to reliable users

without encryption is precarious at best.

FW1ij ,W2ij ,··· ,Wnij ,B1i,B2i,··· ,Bki
: Rm → Rn

v 7→ F (v)
(3.1)

Here F refers to the network in question, and W1ij,W2ij, · · · ,Wnij, B1i, B2i, · · · , Bni

are the weights and biases. We would want an algorithm or function that can encrypt F

while still being able to produce the desired result without first decrypting it.

i.e we want Es such that:

Es(FW1ij ,W2ij ,··· ,Wnij ,B1i,B2i,··· ,Bki
) = Fs

Fs(v) = F (v) ∀v ∈ V ⊂ Rm
(3.2)

3.2 Protecting User Data

Encrypting the user data, although not strictly necessary, has lots of potential benefit.

There are certain data sets which are of sensitive nature, especially in medical applications

where patient data is bound by confidentiality clause. In these cases training neural

networks will be tricky without giving out confidential information. In cases such as
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Figure 3.1: Design of privacy preserving machine learning system.

these, where we want to know something about the data without giving away the data

itself, the problem can be stated as follows.

We want to compute F (p) given F, p

Es(p)→ c is an encryption scheme

The encryption scheme should be such that,

F (p) = E−1
s (F (c))

(3.3)

A fully homomorphic encryption scheme [3] solves this problem effectively. This

is schematically represented in Figure 3.1.

3.3 Putting it Together

The best case scenario, is where we can do both of the previous steps simultaneously, with

authentication for the user data built into the system. This is illustrated schematically
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Figure 3.2: Design of encrypted deep learning system.

in Figure 3.2

We want to compute FW1ij ,W2ij ,··· ,Wnij ,B1i,B2i,··· ,Bki
(v) given F, v ∈ V ⊂ Rm

Es1(v) = cs1 is an encryption scheme with secret key s1 ∈ Spermitted ⊂ S

Encs2(F ) = Fs2 Such that,

Fs2(cs1)

= F (v) s1 ∈ Spermitted

6= F (v) otherwise

And, computing Fs2(cs1) does not require knowledge of s2

(3.4)

3.4 Issues with cryptographic approaches

We ran into several issues when it came to the implementation of the system described

in Section 3.3. One of which was the fact that most existing deep learning libraries

work assuming that the weights and biases are real numbers. However the suitable
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crypto-systems work over a subset of the integers. This led us to making our own deep

learning library that works over a finite subset of the integers. Also any function that

is not a polynomial cannot be implemented in fully homomorphic encryption schemes.

This was circumvented with the help of lookup tables.

However, this is trivial when we look at the main problem in implementing in a fully

encrypted deep learning system.

3.4.1 The Obfuscation Problem

Suppose there is an algorithm which when given a program P generates a program EP ,

with the following conditions.

P
algorithm−−−−−→ EP

P (x) = EP (x) ∀x

EP has no information about P

(3.5)

Such an algorithm has been theoretically shown to be impossible [2].

Our solution unfortunately falls into this category. Our program P is the step by step

multiplication with weight matrices and bias vectors. Our encrypted network is then EP.

So this automatically excludes the possibility of existence of such an encryption scheme.

3.4.2 Practical Issues

The full solution has been shown to be impossible, but the sub parts are still useful. In

particular if we can use neural networks on encrypted data we can still stand to benefit.

This would open up several possibilities especially in the field of medicine at the very

least. It would bring many sensitive data sets into the fold of machine learning.

This has been implemented by Dowlin et al. [10] which is only designed to draw

inferences on encrypted data and by Xu et al. [56] which can train on encrypted data.

However with the known encryption schemes these are severely limited by time constrains

as shown in Table 3.1.
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Not Encrypted (time) Encrypted (time )
Inference on encrypted data 0.1 ms 300s

Training on encrypted data (Functional) 30s 10 minutes
Training on encrypted data (FHE) 30s 10 years

Table 3.1: Time comparison for various encrypted NN schemes.
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4.1 Motivation

Since adversarial attacks were discovered, it started a cat and mouse game between defense

strategies and even more sophisticated attack algorithms. However, a few standards have

emerged over the years. Adversarial training has broadly been shown to make a model

more robust to attacks. Additionally PGD attacks as discussed in section 2.2.3 has been

shown to be "universal" in the sense that robustness against PGD, yields robustness

against all first order adversaries (Madry et al. [33]).

However, adversarial training as discussed in section 2.3.3 comes with a few caveats.

In almost all cases it has been shown to hurt standard testing accuracy. For instance

Ragunathan et al. [40] found that adversarial training improved robust accuracy (accuracy

under adversarial samples) from 3.5% to 45.8% but, it reduced standard accuracy from

95.2% to 87.3% on a suitable trained network on the CIFAR 10 [25] dataset.

Tsipras et al. [52] tried to explain how robustness and accuracy are at odds from a

theoretical standpoint. They demonstrated that if a only a very small subset of the

input is highly correlated with the label, and the rest of the input is weakly correlated,

a robust and accurate classifier is impossible. However, this feature is not present in a

lot of datasets we see in practice. In fact we have good reason to believe robust, and

accurate classifiers exist since humans are robust and accurate classifiers.

Some older results seem to contradict this observation however, for instance Goodfellow

et al. [14] noted that adversarial training using FGSM seemed to act as a sort of

regularisation of the network, resulting in better generalizing results. However, this
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generally only holds for small datasets where over-fitting is a primary concern (as was

noted by Goodfellow, Kurakin et al. [27]). This also fails when more sophisticated

attacks are used.

4.2 Observations

Xie et al. [55] proposed a combination of feature denoising and adversarial training

for a robust classifier on the ImageNet dataset. The ImageNet classification dataset

[45] has ∼ 1.28 million images in 1000 classes. They demonstrated very strong results

(42.8% accuracy against a 2000 iteration PGD attack). We also found that an unbounded

adversary when attacked with ILCM, generated an image belonging to the target

class! Also, this being a variant of the existing and popular, ResNet [19] architecture

leads us to believe, that this model would help us extend this model’s robustness to other

learning tasks.

This approach, where we take the knowledge gained from one problem and apply it

to another problem is known as transfer learning, and has been a popular paradigm in

machine learning. The problem we chose for this task was visual question answering on

the CLEVR dataset [23]. This task consists of natural language questions based on an

input image, and requires the network to reason about the question (see figure 4.1).

A rather successful model in this regard has been Compositional Attention Networks

by Hudson and Manning [22]. Their model consists of a more sophisticated versions of

Long Short Term Memory Networks (LSTM) (see section 1.2.1) [21] (with attention),

named "MAC cell" (see figure 4.2). The network is composed with chained together MAC

cells with additional fully connected layers for output. Additionally they use features

extracted from ResNet101 [19] trained on the ImageNet [45] dataset for a useful and

feature rich embedding of the input image.

With this approach Hudson and Manning showed that their network far outperformed

other proposed solutions and had an accuracy of 98.9%. This network even outperforms

humans who scored 92.6% (as shown by Johnson et al. in 2017 [24]).
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Figure 4.1: Sample questions from the CLEVR dataset. [Source : CLEVR [23]]

Figure 4.2: Design of the ’MAC Cell’ proposed by Hudson and Manning for VQA tasks.
[22]
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However, as was shown by Chaturvedi et al, these networks are highly vulnerable to

adversarial perturbations. Chaturvedi et al. [5] even demonstrated that an attacker who

only adds noise to the background (non-focal parts of the image) can reliably fool the

network.

So, armed with a robust image classifier (ResNet152 Denoise) [55] and a vulnerable

network which uses an accurate but non-robust image feature extractor ResNet101, we

sought to improve the robustness of MAC Network with the adversarially robust feature

extractor. We trained the MAC network on image features extracted using several

variants of the ResNet model.

It was found by Rozsa et al. [44] that models that are more accurate, are generally

also more robust. So, it was no surprise to us that this approach of using ResNet152

Denoise in conjunction with MAC Network was very vulnerable, as accuracy was greatly

impacted with the robust feature extractor. The results are summarized in Table 4.1.

Image Feature Extractor Validation Accuracy
ResNet101 [22] 98.9%
ResNet152 [22] 99.0%
ResNet152 Baseline (adversar-
ial training only) 47.24%

ResNet152 Denoise (adversar-
ial training and denoise layers) 90.72%

Table 4.1: Comparing the accuracy on the validation set of different variants of ResNet
in conjunction with MAC Network.

Features of size 1024× 14× 14 was extracted from Convolution Group 2 of ResNet
1. The most striking result is seen in the difference between row 2 and 3 in Table 4.1.

Those data points belongs to two models which are identical, except that one has been

adversarially trained. Fine-tuning the whole network in an end to end fashion might have

helped, but was not undertaken, as the original model received high accuracy without it,

and would give a better baseline to compare against. This observation seems to be in

line with the common consensus in literature robustness and accuracy are at odds!

1other layers gave worse performance. Drawing features from later layers of size 2048× 7× 7 gives 85%
accuracy on the test set.
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Further Results

Having observed the duality between accuracy and robustness in Chapter 4 we turn our

attention to answering the question Why? No trivial answer to this question exists

in the literature and there have been several proposals with varying degrees of success.

We will briefly look at the proposals in the literature before we can be a step closer to

attempting to answer this question.

5.1 Robustness is Harder

Robustness is a harder problem to solve than vanilla (without adversarial robustness)

learning. Goodfellow et al. [14] noted that adversarial examples are not scattered through-

out the input space in tiny pockets but rather form large subsets of high dimensional

sub-spaces around the distribution samples. Thus if a model has to arrive at the correct

decision boundaries in input space, its decision boundaries have to be a lot more precise.

This makes the problem reasonably harder than learning the underlying representations.

Madry et al. noted that to solve the robustness problem, we need to simultaneously

solve a non-convex outer minimization problem and a non-concave inner maximization

problem. Note, that vanilla learning requires us to approach the problem in Equation

5.1.

argmin
θ

E(xi,yi)∼D[`(fθ(xi), yi)] (5.1)

Here D is an underlying distribution from which input, label pairs (xi, yi) has been
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drawn. fθ is our network with parameter set θ and ` is a suitably chosen loss function.

E(xi,yi)∼D[`(fθ(xi), yi)] is called the population risk.

Whereas the adversarial robustness problem requires us to solve the problem in

Equation 5.2.

argmin
θ

ρ(θ) where, ρ(θ) = E(xi,yi)∼D

[
max
δ∈S

`(fθ(xi + δ), yi)
]

(5.2)

Here, S defines the set of allowable perturbations that we want our model to be

robust to. In particular, a ε-ball under L∞ norm, is a good candidate for S, as such

perturbations are visibly imperceptible.

In this framework, attacks seek to solve the inner maximization problem, and our

goal with solving the robust optimization is recognizing that we need to minimize the

population risk for the adversarial loss under the action of every (or, every necessary)

adversary.

Figure 5.1: Conceptual illustration of standard vs. adversarial decision boundaries [Madry
et al. [33]]

An intuitive understanding of this phenomena is offered by Figure 5.1. In the case

where we are training the network without an adversary the decision boundary is simple,

but in the presence of a L∞ bounded attacker the decision boundary is significantly more

complicated.
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5.2 Capacity is Limited

There is consensus in the literature that network capacity often limits robustness. Good-

fellow et al. [14] noted that networks with higher capacities perform better under

adversarial training. Capacity here roughly equates to the number of parameters in the

network.

Nakkiran [35] went so far as to posit that adversarial robustness is at odds with

"simplicity". In particular they asked - Why do current techniques fail to learn classifier

with low adversarial loss, while they suffice to learn classifiers with low standard loss and

low noise-robust loss?.

Madry et al. [33] noted that higher capacity networks perform better under adversarial

training. They went so far as to claim that a higher capacity network alone can mitigate

some of the losses associated with adversarial training.

However, all prescriptive claims seem to conclude that wider networks are better

equipped to be adversarially trained without loss of accuracy. We can infer the reasoning

behind the claims that wider networks tend to be more robust, and we believe it has to

do with the Universal Approximator Theorem.

5.2.1 Universal Approximator Theorem

Theorem 1 Let φ : R → R be a continuous function1 (activation function). Let Im

denote the m-dimensional unit hypercube [0, 1]m. The space of real valued functions on

Im is denoted by C(Im). Then given any ε > 0 and any function f ∈ C(Im) there exists

an integer N , real constants vi, bi ∈ R and real vectors wi ∈ R for i = 1, · · · , N , such

that we may define:

F (x) =
N∑
i=1

viφ(wTi x+ bi) (5.3)

as an approximate realization of the function f, i.e.

|F (x)− f(x)| < ε ∀x ∈ Im. (5.4)

1Usually refers to the sigmoid function S(x) = 1
1+e−x
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5 The Plasticity Hypothesis : Further Results

This theorem due to Cybenko [9], simply put, posits that a neural network with a

single hidden layer, can approximate any function from its input space to R, if it is

sufficiently wide.

Given this result it is not surprising that most recommendations imply that wider

networks have higher "capacity". However, we believe this result is too simplistic. It has

been shown, that most of the connections in a neural network have little to no impact on

the output.

5.2.2 Model Compression

Le Cun et al. [28] showed that a saliency based approach (using Hessians of the target

function) to removing neurons do not affect accuracy. They proposed removing the

parameters which had the smallest effect on the output and re-training the network. This

process can be done iteratively to reduce the number of parameters in the network. They

demonstrated that up to 30% of the parameters can be removed from a network without

significant losses in accuracy.

Han et al. [18] proposed that we learn the network connections in addition to the

parameters. In this paradigm, the network is first trained to learn important connections

and then retrained to learn the parameter values. They showed 9×−13× compression

over the model parameters, i.e. a model with only ∼ 10% of the parameters, have

effectively the same accuracy as the original model.

Hinton et al. [20] generalized the notion of distillation to deep learning, where instead

of labels, a model is trained on the probabilities of classes given by the output of a larger

network. The softmax function defined in Equation 5.5, gives the probabilities from the

model logits z 2.

S(z)i =
ezi/T∑
j e

zj/T
(5.5)

They have demonstrated that the knowledge of larger networks can be transferred into

smaller networks. Other proposed methods including quantization [17] (to reduce the

2T is a temperature parameter, higher temperatures result in smoother probability distributions
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5 The Plasticity Hypothesis : Further Results

precision of each parameter), decomposition of parameters, etc have been immensely

successful in compressing models significantly without any loss in accuracy.

So we ask ourselves the following question: If neural networks can learn relationships

so efficiently, why is capacity a bottleneck for robustness?

5.3 Plasticity Hypothesis

The key take-away from Section 5.1 and 5.2 is that

• Robustness is a significantly harder problem, and requires higher "capacity" of

networks.

• Neural networks have significantly higher ability to learn, than simple measures of

capacity such as width of the network, or number of parameters leads us to believe.

We also note an interesting observation by Cheng et al. [7] which says that deeper

networks have worse performance under pruning than wider networks, further bolstering

our idea that width is a bad measure of capacity to learn. Taking into account all the

evidence we found and in the literature we are lead to the following.

Hypothesis 1: (weak version) When adversarially training a network, it must be

made deeper to increase robustness while maintaining accuracy.

Hypothesis 2: (strong version) There exists a function Φ : {f, θ} → R which mea-

sures the network’s capacity to learn (plasticity).

Here f is the network (including its topology, training procedure, etc) and θ its

parameter set. We do not know the exact nature of the function, but we note some

general trends supported by the behavior we see in networks in the literature.

For instance it is well known that deep networks perform better on higher dimensional

datasets ( successful networks on ImageNet are hundreds of layers deep). It is quite

evident from the literature, that depth is strongly correlated with Φ. Madry et al. noted

that width is correlated with Φ but only to a certain point.
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5 The Plasticity Hypothesis : Further Results

Pruning and compression can also be understood in this framework. When we regular-

ize a network to prevent over-fitting by either a Lp penalty, dropouts, etc we significantly

reduce the Φ value of a network. This means a much smaller, or less complicated network

can reproduce the same results as they have similar values of Φ.

Of note is the fact that networks with a bounded width, but unbounded depths are

also universal approximators [30]. However, the universal approximator theorems, do not

give us an algorithm to find the values of parameters which would result in the required

approximation, thus not being valuable indicators towards the correlation between depth

or width and Φ. But given the algorithms in our toolbox, we find that deeper networks

perform better both in terms of accuracy and robustness.

We would like to note that Hypothesis 2 is not very useful in its current state, but we

hope to bolster this further with investigation in the future, and hopefully arrive at a

good bounds on Φ given any network.

5.4 Results

Experiments

In our experiments we found evidence in support of Hypothesis 1. In particular, we

trained a simple convolutional neural network on the MNIST dataset [58] (consisting of

60, 000 handwritten digits for training and additional 10, 000 for testing). The simple

model consisted of two convolutional layers, a max pooling layer and two fully connected

layers. The deeper model had three convolutional layers and everything else remained

unchanged.

Initially we trained the network for 12 epochs, followed by 20 epochs of training on

adversarial data generated by a 200 iteration PGD attacker (ε = 8). The robustness

of the model increased (from approximately, 56% to 12% success for the adversary),

however its accuracy on clean data was adversely affected. Then we repeated the exact

same experiment on the deeper model. We found that accuracy on clean images was

improved. The results are summarized in Table 5.1 and in Figure 5.2.
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5 The Plasticity Hypothesis : Further Results

Condition Shallow Model Deep Model
Train Accuracy 99.50 98.70
Test Accuracy 98.80 98.36
Train Accuracy (Post Adversarial
Training) 88.67 94.05

Test Accuracy (Post Adversarial
Training) 94.91 97.33

Table 5.1: Performance comparison for the shallow and deep model.

This is the behavior predicted by Hypothesis 1, and is along the lines of the observation

in Table 4.1 in Section 4.2.

5.5 Future Work

We believe that the plasticity hypothesis is very promising, however we could not gather

nearly enough evidence in support of the hypothesis. Several experiments needs to be

carried out in order to put the hypothesis on a more stable footing.

The first step would be to find hard limits on the memory capacity of the network.

We tend to always try and avoid the scenario when the network exactly learns the

training dataset mapping. However, knowing the bounds on the plasticity for differently

structured networks would give us clues towards how the Φ function behaves.

Additionally, the results we found needs to be extended to the CIFAR-10 [25] and

CIFAR-100 [25] datasets, which are 10, 100 class classification problems respectively.

This would certainly lend more credence to the results we found.

The extension of these results onto the ImageNet dataset[45] would be of even more

interest. In a scenario where the examples in each classes are sparse the learning problem

is in itself rather challenging. Finding the adversarial decision boundaries might require

specific architectures which are several-fold more complex than in the other datasets.

The stronger version of the hypothesis would require us to investigate adversarial

training on several different model types. In particular we would have to find the nature

of correlation between width and plasticity, and depth and plasticity. If they are indeed

40



5 The Plasticity Hypothesis : Further Results

2 4 6 8 10 12

Epochs

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Training Accuracy

MNIST CNN Model
+CNN Layer

2 4 6 8 10 12

Epochs

90

92

94

96

98

100
Validation Accuracy

MNIST CNN Model
+CNN Layer

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

ur
ac

y
(%

)

Training Accuracy

MNIST CNN Model
+CNN Layer

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
Validation Accuracy

MNIST CNN Model
+CNN Layer

5 10 15 20 25 30

Epochs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
cc

ur
ac

y
(%

)

Adversarial Training Start

Training Accuracy

MNIST CNN Model
+CNN Layer

5 10 15 20 25 30

Epochs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Adversarial Training Start

Validation Accuracy

MNIST CNN Model
+CNN Layer

Figure 5.2: Behavior of the two networks under adversarial training. (top) Statistics
during training, (middle) Statistics during adversarial attacks, (bottom)
Combined. The blue line represents the deeper model, it has improved
accuracy on clean images compared to the shallow model.
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separable in this sense we can hope to write down plasticity as a function of width and

depth of the network.

We would also need to study the effect of regularization, quantization, sparsity, loss

function and even the training algorithm on the capacity of a network. Intuition tells us

that all these measures strive to reduce the plasticity of the network in order to avoid

over-fitting. Studying the effect each technique has on plasticity will be elucidating. This

will also lead to us being able to choose hyper-parameters in a more concrete fashion

during vanilla training.

The ultimate end goal would be to be able to write down a closed form expression

or even an algorithm to determine the plasticity of a network. However, this might be

impossible, and even if possible, is a distant goal.
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6 Conclusions

After a brief introduction in machine learning we approached the learning problem and

went over the proposals in literature, to solve the same. Following this we attempted

a solution to the learning problem through cryptographic means, and showed it was a

dead end, owing to current day limits on computational power, and in some cases, its

outright theoretical impossibility.

Our foray into using adversarial training to solve the robustness problems yielded

results which were in tune with the consensus in literature. This led us to turn our

attention to the question - Why robustness and accuracy are at odds?. To that end, we

came up with concrete recommendations to train more robust and accurate networks.

We also hypothesized the existence of a function Φ which measures the plasticity (or

capacity to learn) of a network and noticed the general trends such a function should

have.

Our recommendations regarding the robustness, accuracy duality are contrary to

recommendations in the literature, however more work is needed to refine the hypothesis

and arrive at a more concrete form for the function Φ.

With the increasing prevalence of automation, the learning problem is of critical

importance. Before deep learning can be reliably deployed in applications requiring high

performance and security, we need to have robust and accurate networks. Otherwise, the

day is not far, when we receive a traffic ticket owing to a carefully placed sticker, fooling

our self driving car, and that may just be the least of our worries.
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