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Abstract

Deep learning, a family of data-driven artificial intelligence techniques, has shown immense
promise in a plethora of applications, and it has even outpaced experts in several domains.
However, unlike symbolic approaches to learning, these methods fall short when it comes to
abiding by and learning from pre-existing established principles. This is a significant deficit
for deployment in critical applications such as robotics, medicine, industrial automation,
etc. For a decision system to be considered for adoption in such fields, it must demonstrate
the ability to adhere to specified constraints, an ability missing in deep learning-based

approaches. Exploring this problem serves as the core tenet of this dissertation.

This dissertation starts with an exploration of the abilities of conventional deep learning-
based systems vis-a-vis domain coherence. A large-scale rule-annotated dataset is in-
troduced to mitigate the pronounced lack of suitable constraint adherence evaluation
benchmarks, and with its aid, the rule adherence abilities of vision systems are analyzed.
Additionally, this study probes language models to elicit their performance character-
istics with regard to domain consistency. Examination of these language models with
interventions illustrates their ineptitude at obeying domain principles, and a mitigation
strategy is proposed. This is followed by an exploration of techniques for imbuing deep
learning systems with domain constraint information. Also, a comprehensive study of
standard evaluation metrics and their blind spots pertaining to domain-aware performance
estimation is undertaken. Finally, a novel technique to enforce constraint compliance in
models without training is introduced, which pairs a search strategy with large language

models to achieve cutting-edge performance.

A key highlight of this dissertation is the emphasis on addressing pertinent real-world
problems with scalable and practicable solutions. We hope the results presented here pave
the way for wider adoption of deep learning-based systems in pivotal situations with

enhanced confidence in their trustworthiness.
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“Turing believes machines think
Turing lies with men

Therefore machines do not think”

— Alan Turing






INTRODUCTION

Historically, artificial intelligence (Al) research has followed two disparate develop-
ment paths. One path, termed symbolic Al, represents knowledge in human-readable
symbols and performs reasoning by manipulating the symbols and applying rules
of logical inference. The other path is data-centric Al, the inarguably more success-
ful sibling, which has been getting the biggest share of attention lately. Although
there are a plethora of techniques that fall under the umbrella of data-centric Al or
machine learning (ML) like support vector machines [23], nearest neighbours [47]
or the humble linear regression, one of the most successful techniques in ML has

been deep learning (DL).

DL techniques have been widely applied to a multitude of domains and have de-
throned expert-driven specialized systems to become ubiquitous in many areas of
computer vision (CV), natural language processing (NLP), biotechnology, etc. The
core ideas promulgating DL today are not new, and prototype techniques have been
proposed since the 1960s [140, 145]. The current boom in DL applications can be
largely attributed to the availability of massive amounts of data and computational
power. IBM introduced the 1301 disk storage unit [78] not long after Rosenblatt [ 140]
conceptualized the first prototype neural network (NN), and today large language
models (LLMs), a product of frontier DL research, are trained on the equivalent of
two million such drives worth of data while using the same amount of power as the

Republic of Vanuatu does in a month.



2 | INTRODUCTION

Despite the undeniable triumph of DL techniques, symbolic Al techniques have
some appealing features, the most notable of which is their ability to leverage and
adhere to established domain knowledge and rules. With the widespread use of DL,
it has become apparent that in some situations, this ability is indispensable, and
conventional DL techniques demonstrate a dire shortcoming in this regard. This
lack of domain knowledge adherence marring an incredibly promising family of
techniques is the focus of this dissertation. A hybrid approach learning from data
alongside domain principles and providing decisions in line with problem-specific

constraints would be remarkably opportune.

In this chapter we first introduce the necessary background vis a vis deep learning and
associated techniques (Sections 1.1 and 1.2), before briefly discussing some trends
in attempts to incorporate domain knowledge adherence in DL systems (Section 1.3).

Section 1.4 lays out the organization of the rest of the dissertation.

1.1
DEEP LEARNING

Deep learning (DL) refers to a powerful and diverse family of techniques that

leverage data to model complex real world phenomena. What sets apart DL from the
majority of other techniques in this regime is its unparalleled versatility. DL has been
successfully applied to, and attained state-of-the-art (SoTA) results in, domains like
CV, NLP, reinforcement learning, biotechnology [86], medicine [63], and hundreds

more.

Although DL features multifarious techniques, architectures, training paradigms, and
methodologies, there are a few unifying factors. First and most important of which
is data, and lots of it. This data can be un-annotated (unsupervised) or annotated
by crowdsourcing or appointing experts (supervised). Also, available data is often
cleverly repurposed by making assumptions or employing additional techniques
(weakly supervised). Secondly, DL-based techniques feature at least one parametrized
non-linear almost-everywhere differentiable function (model), which is meant to
imitate the underlying relationship we wish to explore. Finally, they feature an
objective or loss function, quantifying desired outcomes for the model when applied
to the dataset in question. With just these three ingredients, a large array of problems

in varied areas can be tackled.

In this section, we go over some of the background necessary for the rest of the
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presentation. We do not provide a thorough overview of DL, and we recommend the

work by Goodfellow et al. [60] for an expansive treatment.

1.1.1. BASIC FORMALISM

NOTATION

A dataset (D) is typically a set of ordered k-tuples, with k € {1,2}. The k = 1
case refers to the unsupervised setting, and we can simply write D = {x; |Vi €
{1,...,n}}, where n is the size of the dataset (|D| = n), and the x;s are sampled
from the underlying distribution we wish to study. Although not strictly necessary,
typically z; € RY for some d € N, and is called the input. The k = 2 case refers to
the supervised setting, and we have D = {(z;,v;) | Vi € {1,...,n}}. The y;s are
called the ground truths, labels, or annotations and can refer to several objects like
finite sets, one-hot vectors, real numbers, real-valued vectors, etc., and serve as the

desired association corresponding to the input z;.

The model is represented with f, g, h ... and typically appears with a subscript - fj.

fo 1s a function, and we have:
fo: A — RP for some D € N (1.1)

where A is the space from which the input samples are drawn (z; € A). The vector
U; = fo(x;) is termed the output of the model corresponding to input z;. 0 is the set

of all parameters required for the computation of the function, and typically:

9:{Wl,Wg,...,bl,bg,...,etc.}

(1.2)
W, € RM*N are matrices. b; € RX

If 6 is subject to evolution, we denote the set of parameters at time ¢ with 6;, and
if the “optimal” value is attained by all parameters in 6, we refer to the set as 6*.
The model fy is continuous and at least piecewise differentiable with respect to the

parameters in . The objective or loss function is denoted with L or /.

We often need to talk about a particular index of a vector or matrix, and we refer
to the ™ index of a vector v and the 7, /™ index of matrix M as [v]; and [M];;,
respectively. For a real-valued function g : R — R, we often use the shorthand

notation g(v), v € R, to represent the vector whose i component is g([v];).
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FOUNDATIONAL TECHNIQUES

Given a dataset D, a model fy, and a loss function £, such that

L :RP x ... = R"U{0}

(1.3)
,C(fg(flfl), .. ) = S;

where z; is an instance in D, and s; can be interpreted as the “undesirability” of x;
taking on the value §; = fp(z;); DL lays out a framework for finding values of the

parameters in 6:
0 = argminE,p | £(fo(x),..)| (1.4)

such that they are optimal (local minima). ' This hinges on two key ideas—gradient

descent and backpropagation [103].

Gradient descent exploits the following fact:

VwL-h=LW+h)—LW)+ O(h?) by definition.
Setting h = —nVwL, VL -h = —n||[VwL|[* <0

= LW —nVwL) - LW)+0O(h*) <0

= LW —nVwL) < L(W) for some appropriately small > 0.

i.e., around the value of a parameter W € 6, there exists a direction (—Vyy L) along
which we can perturb W by a small amount (7)), such that the loss (undesirability)
reduces. The step size 7 is called the learning rate and is a hyperparameter that must
be externally set. This fact can be used to devise an iterative optimization algorithm

with the update rule:

B
i i 1 i
Wi=Wii—ng > Vi Lfo,(2:),...) VYW e (1.5)
i=1
This algorithm is commonly referred to as mini-batch gradient descent or stochastic
gradient descent (SGD) [142]. The value B, called the batch size is another hyper-
parameter, and B samples from the dataset are randomly drawn to estimate E[L].

The update stops at stationary points, i.e., where Vy, £ = 0, and we use the final set

IThe exact form and inputs of the function £ are dependent on the task, and we outline a few
examples in the upcoming section.
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of parameters found as our predictive model fy-. Adam [91], a refinement of SGD,
employing adaptive learning rate scaling and momentum, is more versatile and is in

widespread use today.

Backpropagation [103, 145] is a technique to efficiently calculate the required gradi-
ents Viy L(fo(x), . ..). The gradients are calculated by evaluating the closed-form
partial derivatives of the functions using their explicit formulas and the chain rule.
The model f, is expressed as a directed (acyclic) graph where each vertex is an input,
parameter, or a function, and there is an edge from node m to node n if m is an
input to the function represented by node n. Along a path a; — as — ... — a, in

) . .
the graph, to calculate 2% we can compute -2%— and Z2+L and combine using the
day, Oag41 day,

chain rule. The backpropagation algorithm avoids repeated gradient computations by

performing them in reverse topologically sorted order.

Thus, to summarize, given fy, D, and L, we sample a batch (B) of inputs from D,
compute L = .7 L(fy(z;),...) followed by Vy, L for every W € 6 using the
backpropagation algorithm. We then update the parameters in ¢ with the SGD (or
Adam, etc.) update rule and repeat this process until some convergence criteria is
met. This is a common approach to finding a suitable model across a wide range of

applications in DL.

EXAMPLE USES

DL is used across a variety of settings with different datasets, models, and objective
functions, ranging from language modeling, semantic segmentation, variational auto-
encoders, and denoising-diffusion to contrastive learning, reinforcement learning,
meta-learning, and more. We provide a few illustrative example tasks and their

associated objective functions here.

In non-linear regression tasks, D = {(x;,y;)|Vi € {1,...,n}}, where z; € RM
and R . The loss function is typically L, norm aka mean-squared error (MSE) of
the output ¢; and ground truth y;, although other disparate losses like smooth; or

intersection-over-union (bounding box regression) are often used.

In binary classification, every sample (z;,y;) € D belongs to the ‘+” or ‘-’ class
and has an associated y; = P(+|x;). The model’s output 3; = fy(x;) € (0,1) is
interpreted as the probability Q(+|x;) := ¥;. The typical loss function in this setting
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is the binary cross-entropy (BCE) loss defined as:

Lece(9i,yi) = H(P, Q) = —Epllog(Q)]
= —P(+|z;)log (Q(+|z:)) — (1 = P(+|z;)) log (1 — Q(+|z;))  (1.6)
= —P(+]z;) log (Q(+]z:)) — P(~|z:) log (Q(—z:))

If discrete decisions are needed, we fix a constant € (0, 1), such that z; is ‘4’ if

Ui > K.

Multi-class classification (MCC) generalizes this notion to C' classes, and for every
z; we have y; € (0,1)C such that [y;], = P(u|z;) and S5 [y], = 1. Here we
typically use the general cross-entropy (CE) loss defined as:

Lce(¥i,yi) = H(P, Q) = —Epl[log(Q)]

) (1.7)
==Y P(v]z;)log ([5].)

v=1

Auto-encoders employ a model fy to create a low-dimensional representation z; €
R? for z; € RP (d < D) and another model g4 to reconstruct z; from z;. The

combined model (f o g)g,4} uses a reconstruction loss like MSE between z; and

(f © 9)io.0(w2)-
1.1.2. POPULAR MODELS

After the concise look at the methodology of DL, we turn to the models, which are
in this context neural networks (NNs). This terminology harkens back to the origins
of the study of these models, which were first proposed as a facsimile of the brain.
These models are typically built up from a composition of simple building blocks,

and we explore a few popular designs in this section.

MULTI-LAYER PERCEPTRON (MLP)
DEFINITION 1.1 (MLP [152]) An MLP is defined by the equation:

hy = o(Wihi—1 + by)
Ui = fe(%’i) = hr; ho = 2;

where hy is the latent output at layer [, computed by multiplying the output of layer
[ — 1 with a weight W, and adding a bias b;, before applying a non-linear activation
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or transfer function o (W, is a linear map and b, is a vector).

Without the non-linear activation function, the MLP model reduces to a linear model,
and thus the former is a crucial component of building NNs. Although simple
in construction, this model with an appropriately chosen activation function has

powerful properties.

THEOREM 1.1 (Universal Function Approximation [25]) [arbitrary width case]
o € C(R,R) is not a polynomial if and only if for n,m € N, a compact subset
KCR"Y feC(K,R") ande > 03A € R b € RF C' € R™* such that

sup |f(2) - C- o(Az +b)]] < e

zeK

Theorem 1.1 basically states that an MLP with a single? hidden layer can approximate
arbitrary functions if equipped with a non-polynomial activation function. Variants
of this theorem with a bounded width and arbitrary depth also exist [109], and
these results demonstrate the potent expressiveness of MLPs. Popular choices for
activation functions include the sigmoid defined as o(z) = 1/(1 4 exp(—x)), ReLU
defined ReLU(z) = x if x > 0 else 0, tanh, and GeLU [66] defined as:

GeLU(x) = 1+ erf(z/v/2) (1.8)

l\DI»—

Deep MLPs, also called fully connected (FC) networks, have been used across a wide
range of applications, and they continue to play a pivotal role in SOTA architectures
[183].

CONVOLUTIONAL NEURAL NETWORK (CNN)

CNNss, introduced by LeCun et al. [100], see extensive applications in image tasks

[94] and are characterized by the convolution operation.

DEFINITION 1.2 (Convolution) Given an image A € RT*W*C and a kernel K €
REmADxC)XC [ W O om,n € N we have:

[COVlV A K Z Z Z i+a,j+b,c * ]a+m+1,b+n+1,c

a=—mb=—n c=1

2potentially infinitely wide.
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form<i<H-—mandn<j<W —n.>

A CNN uses several such groups of convolution operations with learnable parameters
stacked on top of each other, with activation functions and other operations like
pooling, etc. [94] in between. The final stages of CNNs are typically FC networks.
Simonyan and Zisserman [167] introduced VGG-19, a “very” deep* version of
CNN s to tackle the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[28].

Extremely deep networks face significant training difficulties owing to diminished
gradients for initial layers, thus limiting the depth of early CNNs. However, the
introduction of residual (or skip or shortcut) connections has allowed for the instanti-
ation of much deeper CNN-based networks [65]. For a model (f o g o h)(z), adding
residual connections would transform it to the form (f o go h + f o h)(x) and allow
gradient flow to / despite potential adverse effects of g. The ResNet architecture
[65] increased depth by an order of magnitude and beat previous benchmarks on
ILSVRC.

Another notable property of DL-based NN is their transfer learning ability. It has
been observed that large-scale training on low-quality supervised or unsupervised
datasets (pre-training) followed by further training on smaller, higher-quality datasets
(fine-tuning) yields performance benefits for the downstream task and is a widely

used paradigm for a variety of tasks [222].

SEQUENCE MODELS

When the application calls for modeling sequences {;}, z; € R" we often resort to

the recurrent neural network (RNN) architecture.

DEFINITION 1.3 (RNN [144]) Given hg € RM, W € RM*XN V. ¢ RM*XM ] ¢

RP*M and by, b, € RM R respectively, the following relations:

ht = U(W.Tt + Vhtfl + bh)
ye = o(Uhy + by) o(z) =1/(1 + exp(—x))

define an RNN.

This network can be used in different ways depending on the task at hand, like

3Borders can be set to zero, removed, etc.
419 layers of convolutions.
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mapping a sequence to a vector, a vector to a sequence, or a sequence to another
sequence. The weights W, V, U, etc., are shared between time steps, and this model
is trained with the backpropagation through time (BPTT) [198] algorithm, which
involves “unrolling” the network along a (finite) sequence, followed by performing
backpropagation for each time step and adding their contributions. RNNs have sig-
nificant limitations with regard to sequence length and face the vanishing / exploding
gradients problem, i.e. the gradient for time-step ¢ has a W* term. To allay this, long

short term memory networks (LSTMs) [72] were introduced.

DEFINITION 1.4 (LSTM [72]) Given hy € RY and a sequence of input vectors

(.I‘l,xg, . )

fi=0Wjx,+ Ushi—1 + by)

iv = o(Wize + Uihy—1 + b;)

or = o(Woxy + Uphy—1 + b,)

¢ = tanh(Wexy + Uchy—1 + be)

(1.9

c=fiOca 1+ O¢
hy = 0; ® tanh(c¢;)

defines an LSTM network, where W,, U, are matrices, b, are bias vectors, and

represents the Hadamard product.

TRANSFORMERS

The transformer model, proposed by Vaswani et al. [183], has achieved SoTA
performance across a variety of tasks in NLP, CV, etc., by enabling greater scalability
owing to its parallelizable design. Although it was first proposed in the context of
NLP tasks, it is now the model of choice for a plethora of other tasks [34, 86, 92].
There are subtle differences in the architecture in different use cases, e.g., creating
patches of images for CV tasks [34], etc., and we only go over the primary NLP
variant in this section. Figure 1.1 contains a pictorial representation of the transformer

encoder/decoder block®.

The dataset used to train transformers in the NLP setting is copious amounts of
unstructured plain text, and in order to train one, the first step is training a fokenizer

model. This model breaks up text into chunks called fokens, based on occurrence

>Conventionally an encoder-only or decoder-only transformer is used, and the only difference
between them is in masking. The decoder block is different when used in an encoder-decoder
configuration.
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i T mpluts

Add and Norm
T | Input Embedding

FFN

Positional Embedding

Nx —

I Add and Norm I

FIGURE 1.1: Diagram of transformer [183] model.

frequency, so that (a) any piece of text can be written as a combination of these
tokens, (b) there are no extremely rare tokens, and (c) we have a fixed finite number
(V) of tokens. Once a trained tokenizer is obtained (byte-pair encoding [159] for
example), any piece of text can be converted to a sequence of tokens and fed to a

transformer.

The input embedding step (see Figure 1.1) can be thought of as a lookup table,
mapping each token ¢ to a vector v; € R?, and the positional embedding provides
a vectorial representation of the position of the token, which is added to the input
embedding. There are several choices for the positional embedding scheme, like
sinusoidal [183], learned positional embedding [34], or RoPE [172].

Following this step, we proceed to the first transformer encoder/decoder block, and
typically there are several such identical blocks stacked together to form the model.
In each block we have the multi-head self-attention (MHA) or the masked multi-head
self-attention (MMHA) block for the encoder or decoder, respectively.

DEFINITION 1.5 (MHA) Given H € N (number of heads) and input sequence
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(Ul,UQ,...UT), Uj c RdVJ,l S] <T:

LKLV = Wi ay, Wi -y, Wy - 1
Vi,jsuchthat1 <i< H,1<j;<T

Al ET: i (Qé"K;) Vi (self-attention)
= softmax : self-attention
= va

g =Wo - concat(A}, A?, . AJH ) (Output)

defines an MHA layer. Wo, Wi, Wy € RYH*d 1, € R4 gre matrices, and

softmax is defined as:

exp([v]:)

> exp([v];)

[softmax(v))]; ==

For MMHA the only difference is in the self-attention:

T . .
, LK ,
Aj = Z softmax(Q] l ) V' (MMHA self-attention)
I=1 vd
I<j

This is done to ensure that information from future tokens, which would not be

available during inference, is not used during training (causal masking).

The FFN (see Figure 1.1) consists of two FC layers, mapping v; € R? — R —
R? with GeLU activation in between. The Add and Norm consists of a shortcut

connection and LayerNorm normalization [183].

1.2
LANGUAGE MODELS

Transformer-based language models (LMs) have revolutionized the field of NLP

and have had an outsized impact on everyday life, with powerful LLMs like GPT-
4 [126], Llama 3 [116], and Gemini [177] powering omnipresent services like
conversational chat and internet search. In this section we look at some cursory
details for LMs.

DEFINITION 1.6 (language model) A function g is called a language model if
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given any string of tokens x = (x1, s, ..., x;), we have:
g(x) = P(x) = P(x4, x4_1,...,21)

where P(x) represents the probability of occurrence of the string in some natural

language(s).

Equipped with an appropriate DL network ( f5), and a dataset D (corpus) containing
samples (x) from the languages being modeled, we have:
t
P(x) = [[ Plxilx<) Xei = (T1,...2_1); P(z1]xs1) = P(21)

i=1

t
= —log P(x) = — Zlog P(xilx<i)
i=1

Thus, chosing £ such that:
L(0) := —log P(x) Negative log-likelihood loss

~ ) loglfo(x<i)la,

0* = arg m@in E [£(6)]

x~D
gives us a model fy-, such that the probability of the corpus is maximised. fy- is
called an auto-regressive or causal LM, and

[fo- (x)]; = softmax (go(x<;) - €;) = P(x; = i|xy)

where e; are learned embeddings corresponding to vocabulary token 7 and gy is

(typically) a decoder-only transformer model [1, 83, 116].

The other common approach to language modeling [208] is masked or auto-encoder
LM, with the objective:

t
L(0) = —log p(x|x) ~ — Zmi log pe(;[x)
i=1

t
- _ Z m; log <softmax(h9 (x<¢) - emi))

=1
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where hy is (typically) an encoder-only transformer model. In this approach, x is a
version of a sequence x, corrupted by randomly replacing some (~ 10 — 20%) tokens
; with the [MASK] token®. The model hy then tries to reconstruct x from x. Popular
models like BERT [29], RoBERTa [107], etc., follow this paradigm [208].

During training, a technique called teacher forcing—where potentially incorrect
predictions by the model are used for loss calculation but replaced with the ground
truth when calculating representations at other token positions—allows the model to
be parallelized.

INFERENCE ALGORITHMS

In order to use a trained causal language model for generating text, several schemes
like greedy decoding’, beam search [51], random sampling, etc. have been pro-

posed.

In random sampling, at each step, given a sequence x of length ¢, we sample from
the distribution P(z,; = i|x) = [fg+(x)]; to get the next token and continue this
process until either some predetermined stop condition is reached or z = [E0S]®
is predicted. This approach has been found to catalyze diversity in generations,
and for more control over diversity we can introduce a scaling parameter 7" called

temperature [61]:

exp(go(x<t) - €;/T)
S explgo(x<r) - €;/T)

Pz, =ilx;T) =

Setting 7" = 1 gives us regular random sampling, and in the 7" — 0 limit this is
the same as greedy decoding. With increasing temperature, diversity increases and
yields a max-entropy distribution in the high-temperature limit. Other strategies for
controlling generation quality and diversity have been proposed, like Top-k [44],
Top-p [73], n-sampling [69], etc., which truncate the distribution following different

policies.

PROMPTING

One of the most fortuitous properties of large language models is their in-context
learning (ICL) ability. Foundational LL.Ms can perform novel tasks based on pro-

vided instructions, a few solved examples, or additional context [15]. This has led to

m, is an indicator variable, m; = 1 if z; is masked else 0

"Choose the maximum probability next token.
8[E0S] is a special vocabulary token indicating end of sequence.
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the thorough exploration of a family of techniques called prompting, which attempts
to manipulate the input to the LLM, typically the prefix, to improve performance on

numerous tasks.

The few-shot prompting [15] paradigm involves prepending example inputs and
ground truth annotations to the query of an LLM. Brown et al. [15] showed that the
addition of a few examples (~ 5 — 50) improves the performance of models across
various scales and tasks like translation, reasoning, question answering (QA), etc. Op-
tionally, instructions can be added, which show further promise on instruction-tuned
LLMs’ [195]. Zero-shot prompting refers to the special case where only instructions

or contextual information are added without explicit solved examples.

Chain-of-thought prompting [197] prepends instructions to reason about a problem
step-by-step and optionally includes illustrative solutions with logical steps required
to arrive at the solution (see Figure 1.2). This approach has been shown to help with
reasoning and math tasks [197]. Many such “thought chains” can be sampled and
ensembled to improve performance further in an approach called chain-of-thought

with self-consistency [193].

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.
Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each are 6 tennis balls.
5+6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more,
how many apples do they have?

A:

FIGURE 1.2: Example of a chain-of-thought prompt (reproduced from Wei et al.
[197]).

1.3
DOMAIN CONSTRAINTS

As outlined in the preceding sections, DL-based predictive systems outperform other

techniques in several areas and also offer unique advantages like being able to handle

myriad data types and not being reliant on expert-crafted features. However, a key

“Models fine-tuned with instruction following-demonstration datasets.
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hindrance to wider adoption is their unreliability in certain contexts. In many critical
applications, automated decision-making systems must exhibit an ability to operate

within preset boundaries or constraints to be considered for deployment.

It has been demonstrated that conventional DL techniques learning from data alone
do not learn to operate within the bounds of these requisite constraints [121, 150].
Muralidhar et al. [121] showed that NNs trained with regular approaches disobey
monotonicity and boundary constraints, and Saha et al. [150] presented similar
findings for logical constraints. The problem is more severe than occasional constraint
violation, and Zhang et al. [214] have noted that DL systems can fit “a random
labeling of training data”—thus indicating that DL-based approaches are somewhat
oblivious to underlying domain principles. This lack of domain awareness is a major

deterrent to wider acceptance of DL methods in key domains.

A naive approach to dealing with this issue is to augment DL models with a rule-
checking system to suppress offending predictions. Such an approach mitigates this
issue somewhat, potentially at the cost of performance, but completely underutilizes
the opportunity presented by the constraint information. A constraint-aware system
could potentially learn from constraints to make improved predictions, infer miss-
ing details, or display enhanced robustness [14, 115]. Further, augmenting such a
constraint-aware system (soft constraint adherence) with a rule-checker can result in

hard constraint adherence with minimal performance disruption.

To expound on this, consider the example of a CV system employed to automatically
detect credit card details in order to facilitate payment processing. These cards
usually feature a checksum scheme [80] to readily detect simple errors in digit
entry. A DL-based system that takes into account this constraining information could
reinforce its confidence in predicting correct digits or potentially even calculate an

occluded digit.

There are two pertinent areas of exploration in this regard: learning from and abiding
by specified domain constraints, which is the focus of this dissertation. A domain-
obedient deep learning system aims to leverage pre-existing domain constraints in
addition to training data to improve prediction performance and better align models

to domain expectations.

A related interesting area of study is rule learning or reasoning with DL-based
systems [42, 137, 160], where the expected output is novel rules discovered from

potentially noisy data. Although there have been some promising results, current
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solutions are bottlenecked by their immense computational demands. The constraint
adherence problem, although more straightforward, has significant practical ramifica-
tions for wider applicability and is the focus of this dissertation. Awareness of domain

constraints could also potentially mitigate effects of data sparsity [26, 121].

Constraints can take many forms, like numerical or logical relationships, graphs,
probability distributions, or other problem-specific prior knowledge, and we illustrate
this with some examples in Table 1.1. Note that domain constraints are a form
of domain knowledge; however, all domain knowledge is not necessarily domain
constraints; e.g., information regarding the performance of a feature transformation,

etc., is domain knowledge but not constraint.

TABLE 1.1: Examples of domain constraints.

Type Example
Vo, f(x) <5
Numerical Yo,y Te? 4+ 2y =7

Va1, xo; 1 < Tog — f((El) < f(xz)

Vo, A(x) — - B(x)

Ve, ifre A, x g B—xe(C

Vz, if x € Cat — x ¢ Reptile

Graph-based Va, A, B if x is of type A and B, = must also be of type ancestor(A, B)
Distribution z~N(0,1)

Logical

The primary focus of this dissertation is on logical constraints. Since graph-based
constraints are also typically decomposable as a set of logical constraints, a general
framework for incorporating first-order logic (FOL) rules into DL systems would
address the challenges posed by the former. Dash et al. [26] point out that “Logic is
not differentiable”, and addressing logical coherence poses a challenge when working

in the standard DL framework, which is reliant on gradient-based optimization.

Previous studies in this area have explored techniques like modifying losses, architec-
tures, or transforming datasets [14, 26]. The NN architecture employed to address a
problem has a strong influence on constraint adherence. For example, consider CNNs,
which respect translation equivariance and locality constraints (spatially close pixels
are semantically related), or graph neural networks (GNNs), which explicitly model
node relationships. There have been more explicit capitalizations of this general
idea, like the KBANN approach [181], which derives the structure of the NN from
domain knowledge expressed as a set of propositional rules. The work by Xie et al.
[205] advances a system to incorporate symbolic knowledge expressed as graphs

in a GNN to improve generated embeddings. Li and Srikumar [101] proffer adding
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connections to the NN based on domain knowledge expressed as FOL rules.

The classical approach to modifying losses is to introduce auxiliary objectives pe-
nalizing incoherent predictions [112, 121, 166, 206]. Diligenti et al. [32] put forth
a system to translate FOL rules to fuzzy constraints, which are then employed as
penalty terms. Melacci et al. [115] rephrased domain constraints as polynomials
employing continuous logics and transformed the adherence problem into an opti-
mization problem with the polynomials serving as auxiliary losses. Melacci et al.
[115] and Sheatsley et al. [165] demonstrated improved adversarial robustness with
their techniques. Hu et al. [74] suggested an iterative distillation [71] technique to

incorporate logical constraints.

Dataset transformations involve including background knowledge-based relational
or logical features extracted from the data alongside the data [48, 97, 207]; however,
when considering constraint adherence, the customary approach is to augment the
dataset with examples following criteria established by domain rules. As an example,
Bjerrum [13] proposes a methodology where they augment the training dataset with
synthetic samples that are filtered based on domain constraints to reinforce learning
of these constraints. To imbue constraints on input features, data augmentation with

constraint-invariant perturbations has also been explored [118, 185].

Despite several promising forays towards logical constraint adherence, a general
framework for incorporating logical constraints into DL systems remains elusive
[26].

1.4
ORGANIZATION

This dissertation is roughly split into two parts, the first of which focuses on an

exploration of DL systems’ ability to adhere to domain rules. Chapter 2 introduces a
new dataset to combat the lack of large-scale rule-annotated datasets and, with its
assistance, demonstrates the lack of constraint adherence displayed by SoTA DL-
based CV techniques. Chapter 3 analyzes LMs and points out critical deficiencies
they exhibit in adhering to domain expectations with the aid of interventions during
training and inference. Further, an intervention-based training strategy is proposed
that alleviates this effect.

The second part of this dissertation introduces new techniques for incorporating
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domain constraints into DL-based systems. Chapter 4 puts forth a technique to
incorporate logical constraint information into DL systems. This technique leverages
domain rules alongside data to disincentivize incoherent predictions and improve
predictive performance. Additionally, chapter 4 tackles model evaluation and points
out issues with a domain-blind approach to evaluation. A framework for constructing
a metric that takes domain knowledge into account is proposed and exemplified with
a real-life medical use case. Chapter 5 explores inference with LLMs in a constrained
setting. Although significant strides are required in this area, this chapter illustrates
how in-context learning paired with a search strategy can enable the application
of these models in a constrained setting. This is followed by a few concluding

remarks.



DO VISION SYSTEMS LEARN RULES?

In this chapter!, we explore whether DL systems learn to pick up on domain rules
when trained on a vast dataset. When analyzing various DL techniques through
the lens of domain obedience, it is crucial to have large, high-quality datasets with
annotations and constraining rules. Having noticed a gap in this area in the literature,
we put forth VALUED, or Vision and Logical Understanding Evaluation Dataset
(Section 2.2). This dataset features 200,000 annotated images of chess games in
progress and an associated rule set with the aim of understanding constraint obedi-
ence characteristics of SOTA DL techniques. This dataset allows us to explore the

compelling question, “Do models learn rules from data alone?” (Section 2.3).

We explore the problem of constraint adherence in a classification setting, as the
vast majority of problems in DL are posed as versions of classification. In addition
to regular classification problems, a wide array of tasks like language modeling,
semantic segmentation, sentiment analysis, etc., are commonly viewed through the
lens of classification. However, MCC, where each sample of data is mapped to
exactly one class, does not feature inter-class domain constraints. Thus, we look to a
multi-label classification (MLC)-like problem, where many classes may potentially
be predicted from a single data instance. This problem poses more complex kinds of

errors since the predicted set and ground-truth sets can overlap in diverse ways.

IThis chapter is largely based on our paper titled “VALUED - Vision and Logical Understanding
Evaluation Dataset” [150].

19
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2.1
BACKGROUND

Incorporating domain knowledge has been highlighted as one of the “3 Grand

Challenges in developing Al systems” by a recent report on Al for Science [171] and
has been studied with zeal across several domains. Incorporating domain-specific
constraints into DL systems would significantly enhance their application in critical
fields, such as robotics, healthcare, law, and material science. Furthermore, the
development of these methodologies is expected to diminish the dependency on
extensive datasets, which are particularly challenging to annotate in these domains
[210]. As DL-based vision systems are increasingly adopted, there is a crucial
necessity to assess their logical comprehension and explore methods for integrating
such understanding into existing models. A common obstacle identified in the
literature is the scarcity of large, high-quality, annotated datasets accompanied by
associated rules [121, 204, 210].

To examine the capabilities of vision systems within this scope, it is essential to

create a task that ideally possesses the following features:
1. Poses a challenge for SoTA vision foundation models.
2. Contains non-trivial first-order logic rules that can be inferred from data.

3. Presents semantic constraints on localization to test visual reasoning and

numerical constraints to test arithmetic reasoning.

Considering these features, we focus on the challenge of recognizing the state of
a chessboard from an image of an ongoing game (see Figure 2.1). The objective
is to reconstruct the arrangement of pieces on the board. It is important to clarify
that our main goal is not the precise identification of chess game states [113, 200].
Instead, we aim to analyze the limitations of current vision systems in terms of logical

comprehension.

BRIEF PRIMER ON CHESS

Chess is a centuries-old two-player board game played on an 8 x8 grid, where each
player commands 16 pieces of six distinct types. Each type has specific movement
rules (legal moves) [46] within the grid. Players alternate turns, moving one piece

at a time, aiming to place their opponent in a situation where the king’s capture is
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FIGURE 2.1: Example images from the VALUE Dataset
The top row shows samples from the dataset, and the bottom row demonstrates
corresponding expected outputs. Figure is reproduced from Saha et al. [150].

inevitable, known as checkmate.

The pieces are differentiated by color—black or white—and are represented by
acronyms: k, q, r, b, n, p forblack king, queen, rook, bishop, knight, and pawn,
respectively, and the uppercase equivalents for the white pieces. The chessboard’s
columns, known as files, are labeled from A to H from left to right, while the rows,
or ranks, are numbered 1 to 8 starting from the white side (the bottom leftmost dark
square is A1, as depicted in Figure 2.1). The board’s entire configuration, or board
state, is frequently represented using a shorthand notation known as Forsyth-Edwards
Notation (FEN). This format lists the pieces in each rank, separated by slashes (“/”),
with numbers indicating consecutive empty squares. For example, in Figure 2.1 the
FEN for the leftmost and rightmost boards are r1bgk2r/ppppbN1p/2n2np1/4p3/
2B1P3/3P4/PPP2PPP/RNBQK2R and 8/8/2k3P1/8/5K2/6R1/5r2/8, respectively.2
The game starts from the state rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR.
We also use |L| to denote the number of pieces of type L on aboard (e.g., [K| = 1).

2.1.1. RELATED WORKS

Domain-specific knowledge in the form of discrete logical or numerical constraints
is a common element across a variety of problems. Techniques to address this issue
often involve modifying the input data [48], adjusting the loss function [206], altering

the model architecture [35], or a combination of these strategies [74]. Nonetheless,

2r1bgk2r/...represents a row with a black rook, followed by an empty square, followed by a
black bishop, queen, and king, followed by two empty squares and a black rook arranged from left to
right. This is similarly repeated for all ranks (rows).
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further research is necessary to establish a standardized framework for embedding

domain knowledge constraints into DL systems [26].

A recurrent issue noted in the literature is the scarcity of datasets [35, 204, 210].
Specifically, there is a need for annotated datasets that feature domain-specific con-
straints to facilitate the evaluation and refinement of constraint obedience method-
ologies. Often, researchers must rely on toy datasets [137, 160] or those comprising

of only a limited number of examples (~ 10%) [115].

Domain knowledge is often presented as a solution to the challenge of working with
sparse datasets, leading to reported results on such datasets [121, 210]. However,
when the evaluation of methods is limited to these datasets, the meaningfulness of
improvements attributed to domain knowledge remains ambiguous. While, in theory,
domain knowledge should help mitigate performance limitations in data-scarce
scenarios, this is not an unequivocally resolved issue, and the influence of dataset

size on the integration of domain knowledge requires further investigation.

Recently, some advancements have been realized in the NLP domain with the intro-
duction of the BIG-bench (Beyond the Imitation Game benchmark) [170] benchmark,
which presents a wide array of logically constrained tasks. However, due to the im-
mense complexity of natural language, constructing a comprehensive set of logical
constraints that cover a substantial portion of the domain is challenging. As such, it
does not fulfill the requirement for a vast dataset with a comprehensive set of rules
that apply to a large portion of domain instances. There are some efforts aimed at
evaluating the visual reasoning capabilities of DL systems [5, 84, 213]. However,
these datasets focus on the models’ proficiency in abstract visual reasoning, and
to our knowledge, no high-quality datasets exist for analyzing deductive reasoning

based on an extensive set of domain-specific axioms.

Another area where this issue has been extensively explored is in MLC with logical
constraints [75, 95, 115]. In these problems, a knowledge graph imposes entailment
constraints that predictions must comply with, but typically the set of permissible
rules is limited in scope. For instance, datasets like Blurb-genre [4], Uniprot [33], and
other works [143, 149, 175], primarily feature rules of the form Vz, A(z) = B(x).
There is a need to explore richer rule sets that incorporate constraints based on factors
such as localization and counting, along with basic first-order logic rules. Some
large-scale datasets [3, 33] suffer from issues like a long-tailed class distribution

and sparse classes, complicating the evaluation of domain-knowledge integration
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methods. To further research in this domain, it is vital to develop large datasets with
a variety of domain-specific rules, free from extraneous issues like sparsity and class

imbalance.

Previous efforts to develop datasets of chess game images [113, 200] were primarily
aimed at establishing systems for accurate reconstruction of game states, rather than
focusing on the examination of logical understanding. As a result, these datasets
do not include a comprehensive rule set or associated metrics necessary for such
analysis. Despite containing a comparatively smaller number of images (~ 10%),
these datasets can be subsumed into our framework to enhance diversity and further

assist in investigating logical comprehension within vision systems.

In Section 2.2 we discuss the details of our proposed dataset. Finally (Section 2.3),
we attempt to analyze the question: “Given enough data, can deep learning systems

trained with standard approaches learn to abide by underlying logic rules?”

2.2
VALUE DATASET

IMPLEMENTATION DETAILS

To compile the dataset,” we initially obtained a massive collection of chess moves
from online multiplayer games hosted on Lichess [127], which were then transformed
into corresponding intermediate board states by application of the moves to the start
position. While this database includes duplicate states, such as those common in
opening sequences, we chose to retain them to maintain the original distribution of

frequently encountered states.

A 3D model of an environment was created using the open-source modeling software
Blender [22]. This environment features a large plane with a table, two chairs, a
chessboard, and pieces set in their initial position (see Figure 2.2). Using the board
state database, pieces were placed on their designated squares with a small position
jitter added to their positions. The scene is rendered from the point of view of
a camera aimed at the center of the chessboard and at a fixed distance. Random
pans and tilts of the camera were introduced; however, its movement was restricted
to ensure that the Al square remains nearest to it, preventing ambiguity in board

orientation.

Dataset - doi.org/10.5281/zenodo. 10607059


https://doi.org/10.5281/zenodo.10607059
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We rendered 200,000 images at a resolution of (512 x 512 x 3) pixels for the
training/validation set and an additional 19,967 images for the test set. Besides
the board state labels (provided in both array format and FEN), bounding box
information for each piece is included to support other methods like object detection,
although this data is not used in model evaluation. A concise rule set was established
to balance the enforcement of meaningful constraints with computational efficiency.
This rule set also facilitates an analysis of the types of errors made by the prediction

system, providing insights into how SoTA vision systems operate.

All associated code (database creation, rule checking, etc.), materials (dataset, 3D
models, textures, images, etc.), rendering details (camera sensor, rendering settings,

etc.), and relevant information have been made available through the github reposi-

tory.*
TASK DESCRIPTION

If this were a standard classification task, we would seek to learn a function fy : D
— [0, 1)(#pieces + 1)x8x8 (prediction for piece type or empty for all 64 positions) that
models the probability of each piece at every board position given an image of the
board state. However, when in use, this function must be paired with an inference
algorithm with discrete outputs to recreate the board state, which can itself introduce
logical inconsistencies. Thus, in order to analyze performance with regard to logical
coherence, the predictive model with soft outputs and the inference algorithm are
treated together as a black box, and performance is evaluated with respect to the
complete board state prediction. Keeping this in mind, we define a classifier as
follows:
Fy:D — p®®

2.1)
Fy(x) — board state of x

where D C R°12%512X3 ig the space of input images, P = {x, p, P, n, N, b, B,
r, R, 4, Q, k, K} is the setof all pieces (x represents the empty grid location),
and Fy represents the model we seek, parametrized by 6. The images pose several
difficulties from a computer vision perspective, like camera position variability,
occlusion (often severe), and dense clusters of similar-looking small objects (see
Figure 2.2).

#Code repository github.com/espressoVi/VALUE-Dataset


https://github.com/espressoVi/VALUE-Dataset
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It is important to recognize that this problem could be reformulated as a semantic
segmentation problem, a captioning task, or potentially within a completely new
machine learning framework, which we do not explore here. This choice is based on
the premise that our DL model is envisioned as part of a larger pipeline that performs
tasks in real-world applications, where the model’s outputs are fed into an automated

system. In such applications, demonstrating logical understanding is crucial.

In our example task, if model-generated annotations with minor errors were given to a
human, they could easily correct them. However, the impact of logical errors becomes
significantly amplified if the model is part of an automated chess-playing robot
that also incorporates a chess engine to devise moves and software to manipulate
linkages. For this reason, we approach this as a classification problem, recognizing
that alternative paradigms would necessitate converting outputs to a standardized

format identical to the one specified in Equation 2.1 for subsequent processing.

FIGURE 2.2: 3D environment for synthetic image generation
The base 3D scene (left) and dataset examples demonstrating occlusion (marked in
red) and object density (right). Figure is reproduced from Saha et al. [150].

RULE SET

An arrangement of pieces on the chessboard is called valid if there exists a sequence
of legal moves [46] from the starting position that results in the arrangement and the
set of all valid states is denoted ). Given the state of a chessboard, it is computa-
tionally prohibitive to determine if the state is valid; however, some simple sanity
checks can be utilized to rule out the vast majority of invalid states. We curated
such a set of computationally cheap (O(nd?) for n chessboards of side d, i.e., O(n))

first-order logic rules that hold true for all valid chessboard states, to measure domain
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coherence. The proposed rule set is given in Table 2.1 (equivalent rules for white

pieces are also included).

TABLE 2.1: Rule set associated with VALUE Dataset.

A valid chess state must obey all rules (i-viii) given below. These rules are further
divided into two categories—counting (i, iii, iv, vi, vii), and localizing (ii, v, viii), to
analyze specific semantic abilities.

Yy € V (valid states), we have:

i k=1 Exactly one king.

ii  k, Kare not on adjacent squares.

iii |p|+ gl + In| +|b] +|r| <15 Total number of pieces, including king cannot exceed 16.

iv |p| <8 Total number of pawns not exceeding 8.

v Vp,2<rank(p) <7 No pawn on first or last rank.

vi (lp|] =8) = (la] < 1)A(]b] <2)A Ifnopawn is promoted, there cannot be more than two bish-
(Inl<2)A(|r] <€2) ops, knights, rooks or more than one queen.

vii (jp] < 8) = max(0,|]g] — 1) + If pawns might have been promoted, the number of excess
max(0, [b| — 2) + max(0,|n| — 2) + pieces cannot exceed the number of missing pawns.
max(0, [r] —2) <8 — |p|

viii (Jp| = 8) A (Jb| = 2) = by,bs don’t If no pawn has been promoted and there are two bishops,
occupy squares of the same color. they must be on opposite color squares.

If a prediction y satisfies all the rules (Table 2.1), we call it sane, and we have the set
of sane states S following V C S C P%, These rules (Table 2.1) are further divided
into two categories—counting (i, iii, iv, vi, vii), and localizing (ii, v, viii), to analyze
specific semantic abilities. Counting rules apply constraints on the number of objects
that can be present in the scene, whereas localizing rules apply constraints on their

position in the scene.

This is not an exhaustive list, and more such rules can be found. Consider the

following examples:
* b can’t be trapped in the last rank behind 3 adjacent P.

* If all pawns are in their starting position, only the knights can occupy a rank
greater than 2.

* Both kings cannot simultaneously be in check.

e If there are multiple pawns on the same file, the total number of these excess
pawns per file cannot exceed the number of the opponent’s missing pieces (as
pawns can only change files through capture).

To the best of our knowledge, we have included all rules that are:

* Generalizable to real-world scenarios, such as counting and relative position

constraints.
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» Computationally cheap to verify.

* Not reliant on infrequent game states, i.e., they occur frequently enough in the

training set for vision models to potentially learn them.

Adding more niche rules could make the analysis overly specific to chess, which
would detract from our broader goal of examining the general capability of vision
models to learn logical constraints. Note that the general problem, i.e., determining
whether a sequence of legal chess moves can lead to a particular board state, is
computationally intractable. Moreover, we do not expect vision models trained solely
on images of board states to acquire this information. For instance, consider the
following rule: If k or K is in check (can be captured in the next move), then there
must have existed at least one legal move for the piece threatening capture that results
in the current state. To learn such rules, the model would need to understand legal
piece movements and the rules for check, which cannot be inferred from state images

alone.

These rules are nonetheless effective at eliminating a large fraction of invalid states.
Note that the total number of distinct predictions we would have following standard
DL approaches (64 independent classification problems) is [P%| = 13%*® ~ 1072,
but with the addition of just the constraint on the number of pieces, it reduces to
< 10%°.

If these simple rules can be incorporated into the learning algorithm, in addition
to being more applicable to the domain, it could in principle improve performance
drastically. For example, if g was misclassified as k, or b was misclassified as p,

resulting in |p| = 9, the rule set would identify and seek to disincentivize it.

EVALUATION METRICS

We employ several standard metrics to assess both raw performance and alignment
with domain constraints. Given that the logical constraints are applied to the dis-
cretized, complete board state prediction, and in accordance with our definition in
Equation 2.1, techniques such as “threshold tuning” or similar inference methods are
integrated as part of the model evaluation process. Hence, commonly used metrics
like Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver
Operating Characteristic Curve (AUROC), or macro-averaged metrics such as mean
Average Precision (mAP) are not included in our analysis. Given a prediction set

Y = {g]i € {1,...,n}} and the corresponding ground truth set Y = {;}, where
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vi, U; € P%, we define exact match (EM) and F1 as follows:
. ] — A
EM(Y,Y) =~ Il = [Gls). Yk, 1 <k < 64) (2.2)
=1

. 2 R
FUY,Y) == | fi(yi.Gi), where
=1

S Iyl = [l # %)
lyil + 19i]

2.3)
fl(yz'a ?)1) =

Where |y| = >, I([y]; # x) denotes the number of non-empty squares in the grid,
and [ is the indicator function that takes the value 1 if its argument condition is true,

and O otherwise.

Additionally, we define two measures of domain coherence—contradiction % (C')
and sane F1 (sF'1)-as follows:

n

C) =23 15 ¢ 5) (2.4)
L2 R .
SPLY.Y) = =3 (161 € 8) - filvin ) 2.5)

C reflects the frequency of logical constraint violations, i.e., what fraction of pre-
dictions are unusable, and the sF'1 score measures the F} score after eliminating
predictions that are not sane. We also report results on zic, the mean number of rule

violations per instance in Y.

n

(V) =+ 3 (# of rule violations in y> (2.6)
o
When integrating the model into an automated system with downstream tasks re-
quiring strict compliance with domain rules, it is crucial to suppress predictions that
violate these guidelines by implementing consistency checks against the established
rule set. The sF'1 measure is introduced to account for this counterfactual scenario,
where predictions that breach the rules are substituted with a null prediction set.
The gap between the traditional F'1 score and the sF'1 score indicates the potential
for improvement available to algorithms that aim to incorporate logical constraints
effectively. This distinction highlights the impact of domain-specific knowledge on

enhancing the model’s reliability in practical applications.
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To summarize, in this task, we seek an Fj, such that given a set of images x € D, it
can faithfully recreate corresponding ground truth labels yy € P while minimizing

violations of domain rules, i.e., sF'1 ({Fg(l’i)}, {yz}> is maximized.

2.3
ARE RULES LEARNT?

Given our dataset of 200,000+ annotated chess games, we can test the capabilities

of various vision models with regard to their performance and domain constraint

adherence.

To establish baseline results, we selected a range of popular ImageNet [28] pre-

trained vision models like ResNets [65], ViT [34], etc., covering a large range of

scales and training techniques. These pre-trained models were fine-tuned > for 2

epochs after replacing the final FC layer with one of appropriate size (in_features —
8 X 8 x class_number) and adding dropouts (10%) in between. The models were

implemented in pytorch, and trained with the AdamW optimizer (learning rate of

10~*) and CE loss. The images were normalized, and if necessary resized. We trained

the models on a single NVIDIA A6000 48GB GPU.

2.3.1. RESULTS

The performance analysis of various vision models on our dataset is presented in
Table 2.2. Although these pre-trained models differ in terms of training techniques
and scale, they demonstrate proficiency in recognizing visual features necessary for
identifying chess pieces, as evidenced by their high F'1 and EM scores (see Table 2.2).
Interestingly, the Swin Transformer [108] surpasses models that are significantly
larger, potentially due to its unique hierarchical architecture that allows for effective

feature capture at varying scales.

However, these models show considerable room for improvement in terms of domain
consistency, as indicated by the high percentage of predictions containing rule
violations. In critical applications, such inconsistent predictions are untenable and
would require elimination, which is reflected in the notably lower sF'l scores. To
underscore this issue, we draw attention to the pc metric in Table 2.2, which records
the average number of rule violations per prediction. In the best-case scenario, a rule

violation occurs every 15 predictions, while in the worst case, it occurs every 2.3

SFull fine-tune updating all weights.
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FIGURE 2.3: Errors arising due to counting or localizing.

predictions.

Although the results discussed pertain to off-the-shelf vision systems, it is worth
noting that the performance of systems specifically designed for the chess board state
recognition task is comparable, with EM scores of approximately 15% and 7% for
end-to-end and piece-wise classification systems, respectively [113]. This highlights

the ongoing challenge of reducing logical inconsistencies in model predictions.

TABLE 2.2: Performance of popular vision models on the VALUE dataset.
([1] - higher is better, [|] lower is better).

Model | #param. ImageSize | EM(%)[1] C(%)[{] FI1[1] sF1[1] FI-sF1[}]  pe[l]
VGG-16 [167] 134M 2242 26.3% 28.7%  0.880 0.656 0.224  0.426
ResNet50 [65] 24M 5122 56.3% 12.8%  0.959 0.849 0.110 0.172
ResNet101 43M 5122 60.4% 11.1%  0.966 0.869 0.097 0.147
ViT-B/16 [34] 86M 2242 25.9% 30.8%  0.875 0.635 0.240 0.432
ViT-L/32 307M 3842 32.2% 24.0%  0.907 0.711 0.196 0.337
SWIN-tiny/4 [108] 29M 2242 80.3% 52%  0.984 0.938 0.046  0.067

Given that our rule set includes several rules specifically tailored to evaluate local-
ization ability, i.e., constraints on where objects can be located in the scene, and
counting ability, i.e., constraints on the number of objects of a certain kind in the

scene, we examined how well models perform along these categories. Although
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ostensibly it is evident that most errors made by the models stem from breaching
counting constraints (see Figure 2.3a), it is important to recognize that the probabil-
ity of making counting errors is elevated due to the significantly greater number of
potential predictions that can infringe upon these constraints. To adjust for this, we

calculate-

PT]iL{Odel = frlzodel/ gndom (27)

where fR .. is the frequency of rule R being violated by the model in ques-

R
random

P(s'),Vs, s € P%). This shows (see Figure 2.3b) that the models are more likely

tion, and is the frequency of rule violation of a random guesser (P(s) =
to make errors in regard to localization (x = 0.0052 £ 0.0025) than counting
(= 0.0042 £ 0.0023).

Additionally, we examined the models to assess the likelihood of each rule being
violated within the two main categories. Surprisingly, rule (v) in Table 2.1 was never
violated by any model, while rules (iii) and (vii) were unlikely to be violated (see
Figure 2.3¢). Conversely, locality constraints (ii) and (viii), alongside counting rules
(i), (iv), and (vi), were frequently violated. This points to the fact that the ability of
models to adhere to domain constraints is somewhat dependent on the nature of the

constraints themselves.

2.3.2. DISCUSSIONS

Our study reveals that while conventional DL methods may appear effective when
evaluated using standard metrics on the VALUE Dataset (refer to Table 2.2), they
often struggle to comply with domain-specific constraints. Even among the highest-
performing models, 5.2% of predictions (up to 30% in the worst case) exhibit
logical inconsistencies, which are unacceptable in critical applications and result in
a reduced effective F1 score (sF1). Additionally, we found that these DL approaches
exhibit a limited ability to learn constraint-related information from data alone, a
capability that significantly varies based on the type of constraint. Moreover, it
remains uncertain whether the enhanced performance of certain models (as shown in
Table 2.2) is due to their ability to align with dataset constraints or if such results are
meretricious. Further exploration into model robustness is also necessary, particularly
since integrating domain knowledge has shown potential in enhancing adversarial

robustness [115].

Given the significant practical relevance of the problem of incorporating domain

knowledge into DL systems, this subject has garnered considerable attention. How-
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ever, the scarcity of high-quality datasets featuring a diverse and well-curated set of
rules has limited thorough analyses and the advancement of incorporation techniques.
The VALUE Dataset represents a step toward addressing this gap. Nonetheless,
additional research is essential to establish a standardized framework for integrating
domain constraints into deep learning methodologies. Further investigations into
how different characteristics of these rules—such as compositionality, specificity,
and their prevalence in the training distribution—challenge SoTA vision systems

constitute a promising avenue for future work.



FAITHFUL LANGUAGE MODELING

"Despite transformer-based LMs showing remarkable performance at a multitude
of NLP tasks, their internal consistency leaves a lot to be desired. In this chapter
we analyze a set of popular transformer-based LMs to gauge their ability to adhere
to the semantics of the provided context. In particular, we explore contextual QA
tasks, wherein some contextual information (story) is provided to the LM, and a
question is posed whose answer is present in the supplied context. We argue that
domain-aligned LMs should be robust to manipulations of the provided contextual
information, and their responses should change if key pieces of provided context are

altered. This notion is termed faithfulness.

We develop a simple and cost-effective intervention strategy called deletion inter-
vention that can manipulate key information in the provided context and apply it
to a range of LMs. Our findings show that these models are unable to maintain
consistency in this scenario. We further propose an intervention-based training (IBT)
technique that can mitigate this issue and better align models to domain expecta-

tions.

In the following sections we outline some necessary background, followed by our

experimental results demonstrating a lack of semantic faithfulness. We also present

IThis chapter is largely based on our paper titled “Analyzing Semantic Faithfulness of Language
Models via Input Intervention on Question Answering” [18]. Chaturvedi et al. [18] is much wider in
scope and establishes a formal notion of semantic faithfulness; we restrict ourselves to discussions of
adherence of domain constraints vis a vis QA.

33
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results of further analyses, analyzing the efficacy of the IBT scheme with regard to

imbuing semantic faithfulness in LMs.

3.1
BACKGROUND

A considerable body of research has explored how language models perform across

various NLP tasks [139]. One such prevalent method is probing. This technique is
employed to uncover linguistic structures present in the contextual vector embed-
dings of these models [20, 68, 70, 133]. The process of probing involves training a
supplementary model called the probe, which utilizes the representations obtained
from an LM for a downstream linguistic task. Since the LM representations are
fixed, the performance of the probe model indicates how well these representations
embed information necessary for the downstream task. The simplest example of this
technique is linear probing [2], which tests the linear separability of LM-generated
features with an FC layer.

A significant limitation of probing methods is their inability to elucidate how the
embedded information is utilized during the inference process [139, 178]. Probing
only examines the presence of sufficient information within the representation but
tells us nothing about whether the model actually employs this implicit information
when reasoning about textual content. The focus of our experiments is squarely
on this aspect, i.e., how the model makes use of the embedded information in its

reasoning process.

Methods that study LM behavior at inference time can offer better insights into
the inner machinations of LMs. One such work by Elazar et al. [38] explores an
intervention-based strategy called amnesic probing. This method involves making
alterations to the hidden representations of the model to selectively erode certain
morphological information. Our work, in contrast, focuses on performing interven-
tions on the input linguistic content and form. In related research, Balasubramanian
et al. [9] demonstrated that BERT can be surprisingly brittle when swapping one
named entity for another. Furthermore, Sun et al. [173] highlighted BERT’s lack of

robustness to common typographical errors.

Schuff et al. [154] explored QA models that provide explanations alongside answers.
Their manual inspection revealed that the explanations often failed to justify the

predicted answers. Studies investigating the effect of manipulated input texts [9,
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11, 81, 169, 173, 216] typically do so through the lens of adversarial scenarios,
employing attack algorithms or intricate heuristics to alter outputs, even when they
shouldn’t change. Interventions serve as a crucial tool in crafting counterfactual
models [89], and they provide insights into understanding causal structure [10, 98,
155]. Elazar et al. [37] introduced a notion of consistency, which is subsumed by the

notion of semantic faithfulness in our work [18].

3.2
METHODOLOGY

DATASETS AND TASK DESCRIPTION

Our experiments are performed on the CoQA [136] and the HotpotQA [209] datasets.
CoQA stands for Conversational Question Answering and features story passages
(context) from several domains like children’s stories, news, etc., alongside multi-
turn conversational questions. Additionally, a span of the paragraph containing key
information required to answer (rationale) the question is annotated. The answers
are typically also a span of the story or are one of {yes, no, 0~9, unknown}. The
various questions associated with each story might be correlated, i.e., a follow-up
question based on previous questions or answers is featured. An example instance of
the CoQA dataset can be found in Table 3.1.

TABLE 3.1: Example question from the CoQA dataset.
The text marked in bold is the associated annotated rationale required to answer the
question.

Story Once upon a time, in a barn near a farmhouse, there lived a little
white kitten named Cotton. Cotton lived high up ... farmer’s
horses slept. But Cotton wasn’t alone in her little home above
the barn, oh no.

What color was Cotton? white

Where did she live? in a barn

Question Did she live alone?

Answer no

Conversation History

HotpotQA is a single-turn QA dataset, and corresponding to each question there are
2 gold and 8 distractor context paragraphs sourced from Wikipedia, with only the
gold paragraphs containing information relevant to answering the query. This dataset

also contains rationale annotations, and for parity with the CoQA dataset, we use
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the two concatenated gold paragraphs as the provided context (story).> An example
instance of the HotpotQA dataset can be found in Table 3.2. The dataset statistics are

provided in Table 3.3, and results are reported on the dev sets of these datasets.

TABLE 3.2: Example question from the HotpotQA dataset.
The text marked in bold is the associated annotated rationale required to answer the

question.

Story Chumbawamba were a British rock band that formed in 1982 and had major
success until their final performances in 2012. The band constantly shifted in

musical style, drawing on . . .

Spin Doctors is a rock band from USA, formed in New York City, best known

for their early 1990s hits, "Two Princes" and "Little Miss Can’t Be Wrong", . ..

Question Are Chumbawamba and Spin Doctors from the same country?

Answer no

TABLE 3.3: Data Statistics for CoQA and HotpotQA along with the percentage of
unknown questions.

Dataset Split Story Questions unk%

rain 7199 108,647 126
CoQA dev 500 7983 0.83

train 84579 90447 -
dev 7350 7405 -

HotpotQA

MODELS AND EXPERIMENTAL DETAILS

We employed widespread LMs like BERT [29], RoBERTa [107], and XLNet [208] in
their base and large variants. Additionally, InstructGPT [128], i.e., text-davinci-002
and text-davinci-003, were used for this study. The architectures were unchanged

between the two datasets. The input was provided in the following format:

QL AL QI L IAT L QY kL ISEP), (1.

where [Q7" ], [AT .], [S1..x] refer to the k tokens of the m™ turn question, answer,’
and the story, respectively.* Additional tokens like [C'LS], etc., were added as needed.
The publicly available XLNet implementation for COQA® was used, and BERT and
RoBERTa were implemented according to the work by Ju et al. [85]. We implemented

2For the purposes of this study, the distractor paragraphs were discarded.
3Omitted for HotpotQA.

“Context is placed before question for XLNet.
Sgithub.com/stevezheng23/mrc_tf
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TABLE 3.4: Example of information repetition in the CoQA dataset.
Just removing the rationale from the story is often not enough to remove critical
information. However, since the first instance of the critical information is always
annotated, upon truncation, it should not be possible for LMs to respond to the query.
The annotated rationale is marked in bold, and repetitions are shaded .

Characters: Sandy, Rose, Jane, Justin, Mrs. Lin . . .

Jane: Sandy, I called you yesterday. Your mother told me . . . This year is very important
Story to us.

Sandy: (crying) My father has lost his job, and we have no money to pay all the .. .

Jane: Eh... I hear that Sandy’s father has lost his job ...

Question | Who was unemployed?

Answer Sandy’s father

the local LMs in PyTorch [130] using the Huggingface library [199]. The code and

other necessary materials to reproduce our results have been open-sourced.®

Our proposed method for analysis, called deletion intervention, removes the rationale,
i.e., necessary information from the context required to answer a query. In some
instances of the CoQA dataset, there is some information redundancy in the form
of repetitions of necessary information; however, in all such instances the first
occurrence of the information is annotated as the rationale (see Table 3.4 for an
example). Armed with this information, we perform the following interventions and

create corresponding datasets:
» OS (Original Story) - The original dataset without any changes.

» TS (Truncated Story) - Dataset with the stories truncated after, but including,
the rationale.

* TS-R (Truncated Story - Rationale) - Dataset with the stories truncated just
before the rationale, with the ground truth answer appended to the end.

* TS-R+Aug (Truncated Story - Rationale + Augmentation) - Same as TS-R,
but instead of the ground truth answer, a synthetic sentence containing the
ground truth is appended.

The OS and TS interventions contain enough information to successfully respond
to the query. The TS-R intervention, however, removes this requisite information,
only retaining the ground truth. For example, consider the query, “Where does David
go after work?” and the story—“David works in an office. He goes to the gym after
work.” . The TS-R intervention would result in the story—“David works in an office.

gym”. To study if superficial cues, introduced by the intervention process TS-R,

8github.com/akshay107/sem-faithfulness
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are relied upon by the models, we create TS-R+Aug, which has the ground truth
information phrased in the form of a sentence with the help of gpt-3.5-turbo.
Under TS-R+Aug, the previous exemplar story would be, “David works in an office.
Going to the gym helps you stay fit.”. Since the TS-R and TS-R+Aug datasets do
not contain enough information to answer the question, a faithful LM should answer

queries from these datasets with unknown.

The HotpotQA dataset does not feature rationale repetition, and thus we do not
perform truncation on it. The three intervention schemes on this dataset are OS,
which maintains the original story; OS-R, which has the rationale removed and the
ground truth appended; and OS-R+Aug, which has the rationale removed and the

ground truth appended in the form of a synthetic sentence.

INTERVENTION-BASED TRAINING

For evaluating the open-source LMs, we performed fine-tuning. Following conven-
tional practice, the models were fine-tuned on the unmodified dataset, OS,’ and this
strategy is referred to as OT for original training. They were then evaluated under
the various interventions outlined in the preceding section. Additionally, we propose
a new intervention-based training (IBT) strategy. This training strategy involves
sampling from the combined OS, TS, and TS-R (OS, and OS-R for HotpotQA)
intervened CoQA datasets and changing the ground truth answers to reflect faithful-
ness. This entails preserving the ground truth answers for the OS and TS splits and
modifying the ground-truth answers to “unknown” for the TS-R and OS-R splits
on the CoQA and HotpotQA datasets, respectively.® In the following section we
present empirical evidence demonstrating that IBT can mitigate the unfaithfulness
demonstrated by LMs’.

3.3
EXPERIMENTS

3.3.1. FAITHFULNESS

The results of our experiments are summarized in Table 3.5 and Table 3.6. We
first note that there is no appreciable performance difference between the OS- and

TS-intervened CoQA datasets, which is in line with expectations. Further, our

For 1 epoch.
8The augmented datasets TS-R+Aug and OS-R+Aug are only used for evaluation.
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TABLE 3.5: Performance of the models on the CoQA dataset.

unk% refers to the percentage of answers predicted as unknown by the models.
Since TS-R and TS-R+Aug have critical context removed, we expect EM and F1 to
decrease and unk% to increase. Models trained in the regular scheme (OT) do not
follow this, but models trained with IBT do.

oT IBT
Model Dataset F1 EM unk% F1 EM  unk%
oS 76.1 663 197 764 672 3.82
BERT-base TS 772 671 2.18 777 68.0 793
TS-R 556 482 1.98 5.7 5.4 93.08
TS-R+Aug 515 443 7.10 424  36.3 45.50
oS 80.7 71.1 201 78.8 69.8 4.20
BERT-large TS 81.6 721 232 80.1 70.7 17.34
TS-R 63.6 578 3.79 54 5.1 94.25
TS-R+Aug 534 463 8.80 38.3 329 51.88
oS 80.3 70.8 195 81.2 71.6 2.86
RoBERTa-base TS 80.8 71.1 2.64 819 720 520
TS-R 555 511 1692 5.5 53 94.25
TS-R+Aug 392 282 1426 6.3 6.0 92.13
oS 87.0 777 1.74 86.2 769 2.66
RoBERTa-large TS 86.8 773 2.2 86.3 76.7 4.01
TS-R 599 557 2236 5.1 5.0 95.34
TS-R+Aug 429 32.0 2218 6.0 5.7 93.65
oS 82.5 748 1.08 81.3 742 4.63
XLNet-base TS 82.1 742 1.11 79.6 724 10.87
TS-R 53.5 48.0 1400 6.6 6.4 93.86
TS-R+Aug 50.7 453 1345 252 222 68.75
oS 86.3 789 0.86 83.1 758 5.10
XLNet-large TS 85.6 785 258 81.0 74.1 10.69
TS-R 48.1 443 3168 5.6 55 95.42

TS-R+Aug 469 424 26.18 22.1 195 73.93

experiments indicate that all tested models demonstrate poor semantic faithfulness
on both the CoQA and HotpotQA datasets.

Given that TS-R, TS-R+Aug, OS-R, and OS-R+Aug do not contain critical infor-
mation required to answer queries, we expect that their performance on these would
be near zero as measured by EM and F1. Additionally, on these splits, we should also
expect unk%-which measures the percentage of queries with the unknown response—
to be very high. For models trained with the OT strategy, we find that this is not
the case. Although there is some dip in performance on the *-R and *-R+Aug sets,
the models do not change their answers despite critical information being deleted
in the vast majority of cases. The situation is worse on the HotpotQA dataset, and
the ROBERTa model even manages to provide answers more accurately with critical

information removed, as evidenced by the higher EM% on OS-R compared to OS,
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TABLE 3.6: Performance of the models on the HotpotQA dataset.

unk% refers to the percentage of answers predicted as unknown by the models.
Since OS-R and OS-R+Aug have critical context removed, we expect EM and F1 to
decrease and unk% to increase. Models trained in the regular scheme (OT) do not
follow this, but models trained with IBT do.

oT IBT
Model Dataset FI EM unk% FI__EM  unk%
oS 723 567 016 712 558 1.00
BERT-base OS-R 595 485 460 04 03  99.05
OS-R+Aug 63.1 522 427 3.1 22 939
oS 748 59.6 021 738 585 124
BERT-large OS-R 63.7 538 563 05 04 99.17
OS-R+Aug 647 542 536 263 205 9546
oS 720 567 016 727 514 0.3
ROBERTa-base  OS-R 662 59.1 086 06 05 98.86
OS-R+Aug 369 157 094 09 06 97.93
oS 80.0 645 0.8 797 644 070
RoBERTa-large  OS-R 752 700 2.84 0.6 05  99.06
OS-R+Aug 403 184 390 09 06 97.86
oS 742 60.1 007 735 594 1.05
XLNet-base OS-R 630 530 073 06 04 98.85
OS-R+Aug 63.5 539 1.16 3.1 24 9430
oS 80.0 66.1 023 774 635 1.03
XLNet-large OS-R 685 59.1 0.60 04 03 9921

OS-R+Aug 62.7 53.7 9.12 1.6 1.1 96.81

which is contrary to domain expectations. The fact that the unk% does not change
significantly throughout the interventions lends further credence to the hypothesis

that these models are not semantically faithful.

Models trained with the IBT strategy buck this trend. We observe that although
performance on the OS set is nearly identical to the models trained with the OT
strategy, their performance on the *-R and *-R+Aug sets is much worse. Since
performance is measured with respect to the unaltered original ground truth, i.e.,
ground truth corresponding to OS, this is the desired behavior for semantically
faithful models. Additionally, almost all queries in these sets are marked as unknown,
which is the faithful answer.

Our experiments with InstructGPT® [128] also revealed a troubling lack of faithful-
ness. We present performance results of the models (see Table 3.7) as measured by
EM and F1 scores for the two models on TS-R and TS-R+Aug datasets for CoQA
and OS-R and OS-R+Aug datasets for HotpotQA. A basic prompt consisting of only

*https://platform.openai.com/docs/models/gpt-3-5
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TABLE 3.7: Faithfulness performance of InstructGPT models.
Deletion Intervention: EM and F1 scores for the two InstructGPT models.

Model Dataset EM F1
TS-R 464 585
. CoQA TS-R+Aug 404 533
text-davinci-002

HotpotQA OS-R 14.1 322
oo OS-R+Aug 114 29.5
TS-R 28.0 45.6
. CoQA TS-R+Aug 17.3 34.9
text-davinci-003 OSR® 556 417
HotpotQA ' )

OS-R+Aug 18.0 34.1

the story and the question was provided. For CoQA, we see that text-davinci-002
receives astounding scores and correctly predicts the ground truth for nearly ~ 50%
of samples despite the removal of relevant information. While text-davinci-003’s
scores are relatively modest, it still fabricates the ground truth answer for ~ 30% of
instances. Unlike CoQA, for HotpotQA, fext-davinci-002 achieves lower scores than
text-davinci-003 on OS-R. Similar trends are also noted on the HotpotQA dataset,
with text-davinci-003 predicting the ground truth answer for 25.6% of instances of
OS-R.

Notably, the scores for both models are lower for TS-R+Aug and OS-R+Aug than
for TS-R and OS-R on the CoQA and HotpotQA datasets, respectively. This result,
alongside the overall poor semantic faithfulness, suggests that the models rely on
superficial clues to arrive at an answer. For example, given a query like “What color
is X?" the models look for any words that fall in the color category to respond with

instead of focusing on the semantics of the context.

3.3.2. UNDERSTANDING IBT

We perform further experiments to analyze the efficacy of the IBT training strategy
with deletion intervention. To this end, we employ the cosine similarity (cossim) mea-
sure on the output embeddings produced by the models on the various intervention-
based datasets. The cossim of output embeddings is an informative measure since
embeddings with high cossim are extremely likely to be treated similarly by the
downstream FC layer, thus leading to similar final model predictions. We first an-
alyze this with the final layer [C'LS] embeddings, as they represent summarized
contextual information necessary for classification. We measure the cossim between

embeddings produced by the model on the TS and TS-R datasets against the unmod-
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FIGURE 3.1: Differences between embeddings for OT and IBT models.

We plot the histogram of cosine similarity between the [CLS] embedding produced
by a model trained with the OT and IBT strategy under different intervention
schemes. Results are reported with RoBERTa-large, and the figure is reproduced
from Chaturvedi et al. [18].

ified OS dataset. Figure 3.1 plots the histogram of cossim values for embeddings
generated by RoBERTa-large. The sharply peaked distribution at 1 in Figure 3.1(a)
indicates that there aren’t major deviations from the OS dataset for the TS interven-
tion following either training strategy; however, there is a stark difference between
OS and TS-R (shown in Figure 3.1(b)) with the two training strategies. The drop in
cossim observed in Figure 3.1(b) indicates that the model modifies its embeddings
in response to critical information deletion but maintains them despite large chunks
of “irrelevant” information being removed, which is the desired behavior. This trend
is not localized to the [C'LS] embedding, but a similar experiment working with

every common token in OS, TS, and TS-R shows the same behavior (see Figure
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3.2). This indicates that the IBT strategy successfully makes models more aligned to

domain expectations while maintaining baseline performance.
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FIGURE 3.2: Differences between embeddings for OT and IBT models.

We plot the histogram of cosine similarity between the common token embeddings
produced by a model trained with the OT and IBT strategy under different interven-
tion schemes. Results are reported with RoOBERTa-large, and the figure is reproduced

from Chaturvedi et al. [18].
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DOMAIN-AWARE LEARNING &
EVALUATION

In this chapter!, we tackle the problem of incorporating logic rules into the DL
framework. As discussed in Chapter 2, this is a pressing challenge in several critical
domains like healthcare, robotics, law, etc. Notably, these vital expert-dominated
areas are also likely to present significant challenges from the data annotation
perspective since expansive resources must be devoted to this endeavor. Since the
deployment of successful DL models requires copious amounts of training data,
the annotations in these settings are likely to contain significant quantities of label
noise. This is the problem we tackle in Section 4.1. In particular, we explore how
the presence of annotation noise affects domain knowledge adherence and propose
a novel technique to exploit these noisy annotations to not only improve logical

coherence but also improve learning performance.

This chapter (Section 4.2) also explores evaluating models and specifically looks at
problems with common metrics used in DL with the goal of analyzing their efficacy
from the perspective of domain knowledge obedience. Although standard metrics
provide adequate signals in the vast majority of cases, each of them often has its own

pitfalls [14]. Thus, to avoid arriving at a misleading perception of performance, the

IThis chapter is largely based on our papers titled “DOST-Domain Obedient Self-supervision
for Trustworthy Multi Label Classification with Noisy Labels” [149] and “MedTric : A clinically
applicable metric for evaluation of multi-label computational diagnostic systems” [148].

45
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accepted best practice is to report results on a multitude of metrics [56], which also

presents challenges.

In Section 4.2.2, we set out a few basic ground rules a ““ domain obedience” metric
must follow in a clinical setting, followed by an exploration of some common ML
metrics and their potential issues. We then illustrate how to construct a metric from
the ground up with the domain constraints in mind (Section 4.2.5). This is followed
by a validation of the proposed metric in some key areas (Section 4.2.6). Although
the designed metric targets a clinical use case, the process of arriving at the metric is

generalizable to any target domain presenting similar demands.

4.1
DOMAIN KNOWLEDGE AUGMENTATION

Supervised DL algorithms have achieved significant success in addressing challenges

across various domains. Despite this, they face a critical drawback: the vast amounts
of annotated data required. This necessity often leads to annotation methods that can
be unreliable and introduce label noise’. The issue becomes more problematic when
applications demand specialized domain knowledge, as data labeling becomes an
exceedingly resource-intensive task [41]. Consequently, datasets tend to be smaller
[163] and may still contain substantial amounts of noise. Disagreements among
experts over labels (inter-observer variability) and uncertainties that arise (annotator
errors) are frequently overlooked. Annotations are often either automatically gener-
ated using algorithms or crowdsourced with the assistance of non-experts, resulting
in quality degradation [99, 129]. Given that DL models are susceptible to overfitting
and can even adapt to randomly assigned labels [214], label noise poses a significant

challenge [99, 188] in creating dependable DL systems.

Despite MLC being a widespread problem across several domains [76, 211, 217,
220], this has not been widely studied in a noisy setting. As discussed in Chapter
2, this is also a significantly harder problem. Since an arbitrary number of classes
must be predicted, the number of distinct annotations increases from |A| to ~ 24!
for target classes in A, making errors more likely. Moreover, in contrast to the single-
label setting (MCC), where a mislabeled instance results in exactly two classes being
flipped, the multi-label setting allows for more complex errors. For example, a subset

or superset of the target classes may have been annotated, which still retains valuable

’In this context, we use the terms annotation and label interchangeably.
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information. Therefore, it is not ideal to treat these instances in the same manner as

completely erroneous entries.

In this chapter, we focus on annotation errors that contradict domain rules. In
Chapter 2, we saw that DL systems do not natively abide by domain rules, and this
phenomenon is exacerbated by noisy annotations, resulting in models that frequently
generate incoherent predictions during inference. Such errors are more damaging
than simple mislabeling, as they appear “absurd” from the perspective of domain

experts, thus posing a significant barrier to widespread adoption.

A naive solution would be to simply eliminate these contradictory instances from
the dataset following the available domain rules. However, since high-quality data
is often limited, this should be the last resort. The question we aim to address in
this chapter is: can we do better? Specifically, can we leverage domain rules to
develop models that align more closely with those rules (avoiding inferences that
contradict them) and perform as well as, or better than, models trained on a reduced
dataset?

Our investigations start by assessing the impact of annotation noise on model perfor-
mance, considering both standard metrics and compliance with domain rules. We
then introduce a novel domain-obedient self-supervised training (DOST) paradigm
that yields predictions that are more aligned with the rule set and surpasses the perfor-
mance of models trained on the reduced dataset. This approach is more data-efficient
and utilizes instances that violate domain rules to significantly mitigate the effects of
label noise. Additionally, it imbues the model with semantic information from the

domain, leading to enhanced performance.

4.1.1. RELATED WORKS

Label noise is a significant challenge in DL systems, prompting researchers to
develop various solutions [88, 168]. Among these solutions are techniques such as
label cleaning and pre-processing [186], network architecture modifications [182],
and the implementation of robust loss functions and regularization strategies [53, 67].
While there is a substantial body of work addressing noise in the single-label (MCC)
context, explorations in the multi-label context are less prevalent. The traditional
approach in MLC involves decomposing the problem into a series of independent
binary classification tasks. Interestingly, recent advancements in MLC have been
reliant on leveraging label correlations [19, 194], which exacerbates the domain

coherence issue in the presence of noise. To address this, Zhao and Gomez [218]
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introduced a loss function for learning robust embeddings.

This issue is often approached through the lens of disambiguation, i.e., given a
dataset with noisy annotations, the goal is to first recover the ground-truth labels from
candidate labels before applying learning algorithms. For instance, Xie and Huang
[202], and Fang and Zhang [45] explored the introduction of labeling confidences,
whereas Sun et al. [174] applied a low-rank and sparse decomposition technique.
Garcia et al. [52] suggested a meta-learning system that predicts the performance
of noise filters in noisy data identification tasks. Furthermore, Xie and Huang [203]

proposed a framework for MLC that concurrently identifies noisy labels.

Our research ventures into domain knowledge augmentation, particularly focusing on
logical constraints derived from domain information. Logically constrained MLC is a
well-explored area and has been shown to outperform conventional MLC systems in
certain tasks. Giunchiglia and Lukasiewicz [57] developed a method for hierarchical
MLC problems by adding a constraint layer to their models, which uses hierarchies
in the annotations to improve performance. This method demonstrated superior
results compared to standard post-processing techniques, which do not incorporate
constraint information into the model. Melacci et al. [115] trained MLCs using an
augmented loss function that encodes logic constraints as a polynomial of predicate

probabilities, showing that this approach helps mitigate adversarial attacks.

To our knowledge, logically constrained MLC has not been investigated in a noisy
label context, where such constraint violations are frequent. The method we propose,
DOST, capitalizes on these logical constraints to detect noisy labels and concurrently

enhance both performance and domain coherence.

4.1.2. DEFINITIONS AND NOTATION

We start with a dataset D = {(z;,v;)| Vi € {1,..., N}} where z; € A are the data
instances and y; are the corresponding (potentially erroneous) labels. We have a set
of target classes A = {ay,as,...,a,}, and we have y; C A Vi € {1,...,N}. Let
a; also denote a unary predicate, and a;(x;) is true, if x; is an instance of a; else

false. So, the ordered pair (z;, y;) induces the formula:

F(xs,y;) = ap, (x:) N ag,(x:) A ... ag, ()N

Py, (T5) N P () A - oan, (35)

4.1

where, Vj, ag, areiny; and a,, arenotiny;. f; < ... < G < Y1 < ... < Y
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We also have a set of domain rules R = {ry, 75, ...}, where each r, takes the form
T =V, ¢r(x) — Yr(x), where ¢y, and v, are first-order logic formulas built from

the predicates in A and the logical connectives {A, V, —}.

We call an annotation y; of x; contradictory or a contradiction (denoted C(y;))
with the rules R if and only if:

Jr € R, such that r = —F(x;, ;) 4.2)

To measure the amount of contradiction in a set of annotations Y = {y;|i €

{1...n}}, weuse the metric C'(Y"), which is defined by the following equation:

1

= m Z Number of rule violations in y; 4.3)

i=1

C(Y)

With the domain rules R, we define two auxiliary datasets, Do and D=D-— De,
where D¢ is the subset of the dataset with contradictory annotations, i.e., (x;,y;) €
Do <= y; is a contradictory annotation. Let |D¢| = N¢, and p, = % represents

the proportion of contradictory samples.

PROBLEM SETUP

Given dataset D and a rule set R, we want f,, such that:

fo: A—=10,1)7
(4.4)
[fo(@)]k = P(ax(2))
The MLC prediction y is then given by:
Yy = gl/,u(x) = {akau(fE)]k; >, Yag € A} 4.5)

for some constant i € [0, 1]. Ideally, we should have
P(ak € gl,’u(x)‘ak(a:)) —1

P(ar € gup()| ~au(a)) =0

P(C(g,w(x))) —0
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Or, simply put, we want to have an accurate multi-label classifier that avoids contra-

dictory annotations.

In the ensuing discussion, we only consider rules of the form Vz, a;(z) = —(as, (z)V
ag,(z) V.. .ag,(x)) for ag, € A (B # 1) in order to simplify creation of R.

4.1.3. DOST ALGORITHM

FIGURE 4.1: Schematic diagram of DOST algorithm

The dataset is partitioned based on rules in R, and the resulting noisy samples are
passed on to an older copy of the model. The predictions from the older copy (f/)
are then used to compute potential conflicts, which are then used as negative samples.
Figure is reproduced from Saha et al. [149].

In this section we outline DOST, the Domain Obedient Self-supervised Training
algorithm, in order to find g, ,, such that P(C(g,,,,)) is minimized alongside accurate
identification of the classification targets. Given D and R we construct D, D¢ and

we define a rule matrix p € RP*P, as follows:

1 ifdreR, str= VzeAl, qx)= —ax)
[plij = (4.6)
0 otherwise.
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With D, D¢, and p, we train a deep neural network (with sigmoid outputs) on D as

usual (with BCE loss); and for samples in D we use the target

dc(x;) = p[arg max (f;(xl))] 4.7
Lo = —C- 3 [loc(); - log (1= ()], @8

where ( is a constant (hyper-parameter), and f,, represents the deep network with
parameters /. f,, is a slightly older copy of the network (e.g., from the preceding
epoch) with parameters (') treated as constants. Thus, in effect, we find potential
classes that result in rule violations based on the old model’s best guess, and we use
those as negative examples while training. Since d¢(z;) is not a function of p, L&
is differentiable and can be used with any standard gradient based training method.
The algorithm is outlined in Algorithm 1, and a schematic diagram is given in Figure
4.1.

Algorithm 1 : DOST

1: while not StopCondition do

2 Get a batch of samples from D

3 [0

4: for (z;,y;) in batch do

5: if (2;,y;) € D then

6 l+=L (@i, fu (:L‘,)) > Classification loss
7 else

8 [ += Lo(x;) > Eq. 4.8
9: end if

10: end for

11: Back-propagate(()

12: Update model p

13: Every k steps [/ < f

14: if ... then > Check if model converged
15: StopCondition < True
16: end if

17: end while

Although we discuss rules of the form Vz, a;(z) = =(as, (z) Vag,(z) V... az(z)),
the DOST framework is more general. For example, consider a rule of the form
Va, a; () N ay(x) A ... Aa;,(r) = apg(x). Here we can modify Equation 4.7 to
be topy,(f/,(z;)) and construct an appropriate tensor p. All such terms can then be

added to Equation 4.8 (with appropriate signs) to incorporate rules of this nature. L~
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is not necessarily limited to application on D¢, and with an appropriately chosen
¢, can serve as an auxiliary loss to the standard BCE loss in order to mitigate rule

violations.

4.1.4. EXPERIMENTS

EXPERIMENTAL DETAILS

We conducted experiments using two extensive multi-label datasets: PASCAL VOC
[43] and PhysioNet 2020/21 [3]. The PhysioNet 2020/21 dataset consists of 12-lead
ECG signals pooled from several publicly available datasets. Each one of them is
marked with a subset of diagnoses from a set of 27 possible diagnoses. A rule set

was constructed with inputs from experts in the field and is given in Table 4.1.

TABLE 4.1: Contradictory pairs in PhysioNet dataset [3].
Each pair (A, B) represents a pair of rules of the form Vx, A(z) = —B(z) and
B(z) = —A(x). The set of all these rules is R.

(AF , IAVB) (PR, AF) (PR, AFL) (PR, CRBBB)
(PR, IRBBB) (PR, LAnFB) (PAC , AF) (PAC, AFL)
(LPR, AF) (LPR, AFL) (SA, AF) (SA , AFL)
(SA, PR) (SB, AF) (SB, AFL) (SB, PR)
(NSR , TAVB) (NSR , AF) (NSR , AFL) (NSR , Brady)
(NSR,CRBBB) (NSR,IRBBB) (NSR , LAnFB) (NSR, LAD)
(NSR, NSIVCB) (NSR, PAC) (NSR , PVC) (NSR, LPR)
(NSR, LQT) (NSR , QADb) (NSR , RAD) (NSR, SA)
(STach , AF) (STach , AFL) (STach , Brady) (STach , PR)
(STach, SB) (STach , NSR) (TAb, NSR) (TInv , NSR)

(NSR , LBBB) (NSR, SB)

PASCAL VOC serves as a widely recognized benchmark in computer vision for
MLC, where the task is to identify a subset of classes present in an image from
a possible 20 classes. Although PASCAL VOC does not inherently include rules
prohibiting specific class combinations, we devised a rule set for demonstration
purposes based on classes that do not co-occur in the training data (see Table
4.2).

By constructing the rule set based on the class co-occurrences within the datasets,
we obviously find that PASCAL VOC annotations do not contradict the rule set.
In contrast, about 20% of the annotations in the PhysioNet dataset conflicted with

the established rule set. To assess the impact of noise on model performance, we
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TABLE 4.2: Rule set R used with the PASCAL-VOC dataset [43]

V image x € D, we have

chair(z) —

bus(z) —
dog(z) —
train(z) —

pottedplant(z) —

sofa(z) —
bird(z) —
cat(z) —
tvmonitor(z) —
motorbike(z) —
person(z) —
sheep(z) —

bottle(z) —
bicycle(x) —

aeroplane(z) —

horse(x) —

diningtable(z) —

car(z) —
boat(z) —
cow(z) —

—(bus(z) V dog(x) V train(x) V pottedplant(z) V sofa(z) V bird(x) V cat(z) V tvmonitor(z) V
motorbike(x) V person(z) V sheep(z) V bottle(z) V bicycle(x) V aeroplane(x) V horse(x) V
diningtable(z) V car(z) V boat(z) V cow(x))

—(chair(z) V sofa(z) Vbird(z) V cat(x) V tvmonitor(z) V horse(z) V diningtable(z) V cow(z))
—(chair(z) V train(z) V aeroplane(z))

—(chair(z) Vdog(z) Vbird(z) V cat(z) V tvmonitor(z) Vmotorbike(x) V sheep(z) V bottle(x) vV
aeroplane(z) V diningtable(z) V cow(z))

—(chair(z) V sheep(z) V cow(z))

—(chair(z) V bus(x) V bird(z) V sheep(z) V aeroplane(z) V horse(x) V cow(x))

—(chair(z) V bus(z) V train(z) V sofa(z) V motorbike(z))

—(chair(z) V bus(z) V train(z) V motorbike(x) V aeroplane(z) V horse(x) V boat(z))
—(chair(z) V bus(x) V train(z) V motorbike(z) V sheep(z) V aeroplane(z) V cow(x))
—(chair(z) V train(z) V bird(z) V cat(z) V tvmonitor(z) V diningtable(z))

—(chair(z))

—(chair(z)Vtrain(z)Vpottedplant(z)Vsofa(z)V tvmonitor(z) Vbicycle(z) V aeroplane(z) VvV
diningtable(z) V boat(x))

—(chair(z) V train(z) V aeroplane(z) V cow(z))
—(chair(z) V sheep(z) V aeroplane(z) V horse(z))
—(chair(z) V dog(z) V train(z) V sofa(z) V cat(z
bicycle(x) V horse(z) V diningtable(z) V cow(z))
—(chair(z) Vbus(z)Vsofa(z)Vcat(xz)Vbicycle(z)Vaeroplane(x)Vdiningtable(z) Vboat(z))
—(chair(z) Vbus(z) V train(z) V motorbike(z) V sheep(z) V aeroplane(x) V horse(z) V cow(x))

(z)
(z)
—(chair(z))
(z)
()

) V tvmonitor(x) V sheep(z) V bottle(z) V

—(chair(z) V cat(x) V sheep(z) V horse(x))
—(chair(z) V bus(z) V train(z) V pottedplant(x) V sofa(z) V tvmonitor(x) V bottle(x) V

aeroplane(z) V diningtable(z))

introduced additional noise in both datasets.

Noisy instances were introduced with a probability p¢, either by selecting from a
pool of pre-defined noisy instances or by injecting noise according to a geometric
distribution. Consequently, from the dataset D and the rule set R, we generated the
datasets D and D¢ such that po = %. These datasets were then used to evaluate
the influence of noise and the efficacy of various noise mitigation strategies.

The experiments were executed on a single NVIDIA RTX A6000 48GB GPU, and

results are reported using 10-fold cross-validation across all scenarios.

RESULTS

Just like we noted in Section 2.3, we observe that, even without any noisy annotations
in the dataset, standard DL algorithms still produce contradictory predictions (see
Table 4.3). Our fine-tuned ResNet50 pre-trained [65] on ImageNet [28] for the
PASCAL VOC task was comparatively better than the model trained on PhysioNet,

perhaps owing to the large-scale pre-training.

Our experimental results consistently show that increasing the percentage of noisy

annotations negatively impacts both the quantity of contradictions and overall model
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TABLE 4.3: DL model trained on clean dataset produces contradictions.
We report 10-fold cross-validation C'(Y) results (see Equation 4.3).

‘ PhysioNet 2020 ‘ PASCAL VOC
Train 4.02% +1.65 0.05% +0.04
Test 3.57% +1.32 0.11% +o0.09

performance (see Figure 4.2).

Subsequently, we evaluated the impact of two mitigation strategies on contradictory
outputs: the naive approach of filtering out conflicting annotations and our proposed
DOST paradigm (see Figure 4.3). Since we apply the self-supervision loss update
solely on Dy (see Equation 4.8, Algorithm 1), the two strategies should yield
similar outcomes when D¢ is small. We observe that DOST significantly reduces

contradictory predictions, particularly at higher noise levels.

As previously mentioned, the fine-tuned ResNet50 model applied to the PASCAL
VOC task exhibits fewer contradictory predictions, and this remains stable through-
out the filtering strategy. Although slight improvements with DOST are noted at
higher noise levels, the difference is marginal. The effect is more substantial in
the model trained from scratch on the PhysioNet dataset, where DOST effectively
reduces contradictory outputs to levels better than baseline in most cases (see Table
4.4).

TABLE 4.4: Performance of DOST at various noise levels.

DOST eliminates contradictory outputs at high noise levels and even outperforms the
ideal no-noise scenario. We report C'(Y") per hundred instances from the PhysioNet
dataset. Perfect dataset refers to a dataset with 0% noise level.

Noise level Perfect dataset DOST  Filtered dataset Noisy dataset

12.5% 3.82 +0.41 4.42 +1.67 14.90 +4.38
25% 3 57 1139 2.46 +£1.19 4.22 +1.78 18.09 +3.31
37.5% 1.36 +o0.61 5.67 +2.33 21.61 +2.86
50% 1.61 +o0.56 10.07 +4.10 23.66 +3.98

Lastly, we assessed the influence of both strategies on overall performance. The
DOST paradigm surpasses the naive filtering strategy, showing notable improve-
ments across various metrics (see Figure 4.4). In particular, with the PASCAL VOC
dataset, the DOST paradigm almost entirely mitigates the effects of noise (see Table
4.5).
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FIGURE 4.2: Effect of noise on performance of DL models.

With increasing amounts of noise model performance continually degrades, whereas
contradictions increase. The X-axis represents the percentage of training instances
containing contradictions. (A-E) shows various metrics for PhysioNet dataset, and
(F-J) for PASCAL VOC.
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FIGURE 4.3: DOST paradigm significantly reduces rule violations

The fop panel presents results from the PhysioNet dataset and the botfom panel
presents results from PASCAL-VOC. The shaded region in the figure below is a
magnified view of the curves close to the X-axis. Figure is reproduced from Saha
et al. [149].

TABLE 4.5: Even with 50% of instances containing noisy labels, DOST successfully
counteracts the effect of noise. Filtered dataset refers to the dataset with erroneously
annotated samples removed, i.e., it is smaller in size.

Metric Perfect Dataset DOST Noisy Dataset Filtered Dataset
Noise Level 0% 50% 50% 0%
Accuracy 0.809 +0.004 0.791 +0.00s  0.673 +o0.011 0.771 +o.008
Fl 0851 +0.004 0836 +0.008 0716 +0.008 0820 +0.007
Macro F1 0.815 +o0.007 0.798 +o.011 0.613 +o.017 0.768 +o0.007
Subset Accuracy 0.677 +o.010 0.656 +0.010  0.549 +o0.017 0.621 +o.017
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FIGURE 4.4: DOST paradigm improves performance across several metrics.
The shaded region above the blue line (performance of the model trained on a
noisy dataset) is the potential room for improvement, given a hypothetical clean
dataset, which is usually not available in practice. DOST outperforms the naive
filtering approach in all cases, and on the PASCAL VOC dataset, almost manages
to counteract the effect of noise altogether. The left (A-D) panel consists of plots
of various metrics for PASCAL VOC, and the right (E-H) panel plots the same for
PhysioNet. Figure is reproduced from Saha et al. [149].
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4.2
EVALUATING MODELS

In this section, we look at some commonly used MLC metrics and the potential

issues they present.

4.2.1. DEFINITIONS

We first present some definitions that are used throughout the rest of the chapter.

Some of these definitions are also summarized in Table 4.6.

TABLE 4.6: Common notation associated with MLC.

Symbol ‘ Meaning

A Set of all possible classes (finite) |A| = P
a; j-thelementof A.a; € AVj € {1,... P}
24 The set of all possible subsets of A.
D The dataset (see Definition 4.1). |D| = N
(x;,y;) € D | The i-th instance from the dataset with data z; € R and label
Yi € 24,
fo() The prediction system parametrized by 6.
2; € 2% | The prediction set for (x;, ;) given by fy
M(.,.) A metric; maps {(Z;,y;)} to ascore s € R

DEFINITION 4.1 (Dataset) Given a set of samples and their respective annotations
D = {(zi,y:)| i € 1,---,N}, where x; and y; are the i'" sample and label,
respectively is called the dataset. Each vy; is a set of classes (drawn from a fixed set

of possible classes A = {ay,ay,...ap}), ie, y; € 2% x; € RX,

DEFINITION 4.2 (Classifier) f, : RX — 2% is called a classifier. Given a sample
x;, it attempts to recreate the corresponding label y; ~ 2; = fo(x;) for some

(potentially hidden) parameters 0.

The results from the classification framework are often presented as scores, which
relate to the likelihood of a particular class being identified, i.e., go : RX — [0, 1]
and some thresholding protocol must be additionally specified. Generally, such a
threshold ¢4 p(x;) — t; € [0,1]7. A successful scheme should have:

[90(2:)]; > go(2:)]k if a; € y; and ay, & y; (4.9)
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We also define

[zi]k = [ho(x:)]i == Liflgo(@li > [l (4.10)

0, otherwise

The prediction set Z;, i.e., the set of all label classes meeting the prediction threshold,
is given by z; = {a;|z;; = 1, Vj € {1,..., P}}. The combination of the function
gp and the thresholding procedure results in what we refer to as a classifier.

In this chapter, we focus solely on evaluating the output set Z;, in order to have
the most general treatment of various kinds of ML-based classification systems.
The aforementioned classification system, which includes the function gy and the

thresholding strategy, is treated as a black box.

Note, this excludes metrics like AUC [131], etc., which, although useful in certain
contexts, pose the additional challenge of requiring access to the implementation
details of the classifier in question. For instance, a clever inference algorithm might
make the decision to detect a class based on some accessory information in addition
to the classifier outputs in a manner that abides by domain rules. Thus, to analyze
the efficacy of an end-to-end system with regard to domain constraint adherence, it
makes more sense to talk about the complete system. Thus, we restrict ourselves to
implementation blind metrics, i.e., those that can be computed given just the output

and target labels.

DEFINITION 4.3 (Wrong Classification) A prediction Z; is said to be a wrong

classification if Z; N y; = ¢, i.e., prediction and ground truth are disjoint.

DEFINITION 4.4 (Missed Classification) A prediction Z; is said to be a missed

classification if z; C vy, i.e., prediction is a proper subset of ground truth labels.

DEFINITION 4.5 (Over-Classification) A prediction z; is said to be an over-

classification, if y; C Z;, i.e., ground truth is a proper subset of predicted labels.

=

DEFINITION 4.6 The elements of sets z; — v;, y; — 2;, and y; N Z; are called extra

predictions, missed predictions, and correct predictions respectively.

4.2.2. DIAGNOSTIC CONSTRAINTS

ML techniques have shown great promise in computational diagnostics [62, 221]

and have been applied to a wide set of diagnostic problems [63, 219], which are
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often multi-label, i.e., where several diagnostic features might be detected from one
data sample [192]. For example, consider a blood sample that might be evaluated by
a pathologist to detect the presence of several pathogens or a radiologist marking

various anomalies in a CT scan.

From an aggregated health-care cost perspective, the potential benefit from algorith-
mic screening can be massive (see Figure 4.5), provided we can find a suitable system.
Therefore, comparing several competing computational diagnostic systems in accor-
dance with clinical outcomes is paramount for deployment in clinical applications.

This however continues to pose a challenge.

Expert Consultation

ﬁd'i%”\

Treatment

e

Algorithmic Screening No Treatment

FIGURE 4.5: Algorithmic screening cuts down on health-care costs.

Since algorithmic screening is orders of magnitude cheaper than expert intervention,
well-designed computational systems can make health care accessible to a larger
population.

False Negatives

There is currently no agreement on the optimal metric for evaluating models [219],
and it is generally advised to asses models using multiple metrics [56]. Advances
in multi-label diagnostics often have to contend with this challenge [17, 63, 219].
This scattershot approach, however, introduces complications, as comparing models
evaluated with different sets of metrics becomes problematic [131]. Furthermore,

selecting a particular metric can emphasize a model’s strengths while concealing
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its weaknesses [131]. Different metrics often provide conflicting evaluations of
system performance [87], meaning the choice of an optimal diagnostic system can
be dictated by the choice of the metric. Even when results are presented across
multiple metrics, they may not sufficiently inform clinical decision-making. A broad
array of scores, each reflecting various performance aspects, may not address the
question, “Which system is more suitable for clinical use?” Since these metrics are
adapted from machine learning, where priorities differ, a higher metric score does
not necessarily signify superior diagnostic performance, and vice versa. Therefore,
it is crucial to develop a metric that can effectively rank computational diagnostic

models based on relevant clinical outcomes [3].

In clinical practice, some facts are ubiquitous and can be treated like axioms. For
instance, a wrong diagnosis (wrong classification) is worse than a missed diag-
nosis (missed classification), which is in turn worse than over-diagnosis (over-
classification) up to a certain extent. The standard metrics used in an MLC setting

do not reflect this.

Also, certain sets of diagnostics have similar treatment plans and outcomes [3], thus
making certain types of missed diagnosis less deleterious. Additionally, if there are
k possible diagnoses, all 2% might not be feasible or logically sound. For example,
consider that a patient cannot simultaneously demonstrate sinus tachycardia (elevated
heart rate) and sinus bradycardia (lowered heart rate) or hypo- and hypertension. In
general, given k classes, there may be a number of first-order logic rules that preclude
or imply the presence of other classes under certain conditions—and a successful

diagnostic system must adhere to them strictly.

In a computational diagnostic system, the principle of risk avoidance suggests that
sensitivity should be linked to cost, meaning that more serious conditions should be
detected with higher sensitivity than less significant issues. However, increasing sen-
sitivity often reduces specificity, potentially leading to alarm fatigue. Consequently,
a general MLC metric might not reflect the clinical principles and practices critical
for evaluating such a system. It may fail to capture essential characteristics necessary

for a diagnostic tool.
With clinical considerations in mind and in consultation with domain experts, we
have identified the key attributes that a clinically aligned metric should exhibit.

» Missed diagnosis is more harmful than over-diagnosis.

* A wrong diagnosis is more harmful than an over-diagnosis or missed diagnosis.
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* Some diagnoses have more clinical significance.
* Some diagnoses are contradictory and should be disqualifying.

* The quality of a diagnostic tool should not depend on the relative proportions
of diseases present in the population (dataset distribution independence).

In the following sections, we will use these axioms and the rules posed in a diagnostic
context to analyze various commonly used metrics and attempt to develop our own

metric adhering to these principles.

4.2.3. METRICS

To judge the quality of the classifier fy over the dataset D, it is sufficient to analyze
the set P = {(Z;, v;)|Vi, s.t. (z;,y;) € D}. The job of a metric, given such a set P,
is to provide a number, which is correlated to the performance of the classification
system. We shall not be exploring metrics designed for the label ranking task [111]
(coverage, etc.); since they are not relevant in this context, instead we shall focus on
bipartition-based metrics in the ensuing discussion, which are designed for the task
at hand.

Bipartition metrics can be broadly divided into two categories: label-based (see
Table 4.7a) and example-based (see Table 4.7b). The example-based metrics assign
a score based on averages over certain functions of the actual and predicted label
sets. Label-based metrics on the other hand compute the prediction performance of

each label in isolation and then compute averages over labels.

Certain other binary metrics have been proposed in an MLC context, like the Math-
ews Correlation Coefficient [21], etc., and we can define macro/micro averages or
example-based metrics based on these; however due to their limited usage in an
MLC context, we omit these. Their definitions suggest that their behavior in key

aspects follows the other metrics [56] discussed in the following section.

LABEL-BASED METRICS

Label-based metrics [111] typically use micro- or macro-averages of binary classifi-
cation metrics like precision, recall, and F (or the more general [3) to summarize
performance across multiple categories (see Table 4.7a). Specificity alone is not ideal
for settings with class imbalance, a common challenge in many diagnostic datasets
[151].

A macro-averaged metric is calculated by independently evaluating the binary

metric for each class and then averaging over all classes. Conversely, a micro-
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TABLE 4.7: Common example and label-based metrics in MLC.

Metric Definition Metric Definition
Macro- _tp Hamming | .y . A

f o PZ 1% ~ 2ic1 712Dy
precision J=1 tpi+fp; Loss N £vi=1 P
Macro- 1 =P tp; |

S J 2iNy;|
recall P Zj:l tpj+fn; Accuracy Zz 1 1230y
Macro- | Zp Fl. Fl. — 2w Precision | N |z
Fl-score F =1 Pi+7; N Zui=1 [y,
Micro- S tps Recall 1 ZN e
precision S i+ fp; N £ei=1 ]
Micro- S tp F1-score Z 22Ny
recall Z;’D:I tpj +Z§):1 Inj N i=1 |zl‘+|yl
Micro- 2-micro-precision-micro-recall Subset o
F1-score micro-precision+micro-recall Accuracy N Zz 1 ( Zj = yl)
(a) Label-based metrics. (b) Example-based metrics.

averaged metric aggregates the statistics across all classes before computing the final
metric. Both methods, however, have inherent limitations. Micro-averaging tends to
favor classifiers that perform well on the abundant classes, while macro-averaging
benefits classifiers that excel in detecting rare classes. In clinical contexts, where
certain presentations are infrequent but critical, micro-averaged measures are less
meaningful, as rare conditions are often a cause for concern and might benefit greatly
from intervention. Problems arise when the majority class is the primary cause for
concern since a macro-averaged metric might give an overly positive impression of

the diagnostic system’s performance.

EXAMPLE-BASED METRICS

Example-based metrics [153] (Table 4.7b), are specifically crafted to highlight certain
critical aspects of a multi-label classifier. It is generally insufficient to rely on just

one or two metrics [219], as each offers unique insights that can be valuable.

A noteworthy recent effort by Alday et al. [3] aimed to develop a metric that in-
corporates clinical outcomes in a multi-label diagnostic context. This metric was
designed to assess various computational models, which are tasked with identifying a
subset of diagnostic features from 12-lead ECG signals across 27 potential diagnostic

classes, many of which may coexist simultaneously. In this metric, we first define
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the multi-class confusion matrix a as:

N

lalje = _[alijk, where, (4.11)
=1
—L . ifc, € % andc; €y
e e Y (4.12)
0, otherwise.

Next we compute ¢(Y,Z) = >, > [w]x[al;r where [w];; is the weight matrix
giving partial rewards to incorrect guesses. [w];; = 1 and in general 0 < w;j, < 1.

The final score is given as:

t(Y7 Z) - t(Ya X{NSR})

CM =
t(Y,Y) = t(Y, X{nsry)

(4.13)

where X{ygpy is a prediction set where all predictions are the normal class { NSR}.
This metric, which is a weighted version of accuracy [106], is limited to being used
on the PhysioNet 2020/21 dataset [3], however, with additional domain knowledge
inputs, it can be used in different contexts.

These metrics often fall short in addressing clinical considerations, such as the
fact that over-diagnosis is generally less detrimental than missed diagnosis, and
they do not sufficiently account for the severity of the diagnosis. In the next sec-
tion, we will conduct a comprehensive analysis of existing metrics from a clinical

standpoint.

4.2.4. ARE ML METRICS CLINICALLY APPLICABLE?

The preceding discussion highlights that a collection of metrics is insufficient for
making deployment decisions, underscoring the necessity for a single metric with
pertinent attributes to effectively compare different computational models. In the
following discussion, we will see that the metrics borrowed from ML do not ade-
quately address clinical needs. Our benchmark for assessing the clinical relevance
of these metrics will be based on the criteria outlined in Section 4.2.2. Specifically,
we will evaluate whether a wrong diagnosis (WD) is penalized more heavily than a

missed diagnosis (MD), which in turn faces a greater penalty than over-diagnosis
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(OD), with the perfect diagnosis (PD) receiving the highest scores, i.e.,

scorey p < scorey p < scorepp < SCorepp (Clinical Order)

LABEL-BASED METRICS

It is commonly agreed that example-based metrics are more appropriate for eval-
uating MLC tasks [56]. Nevertheless, for a comprehensive analysis, we will also

examine some widely used label-based metrics.

In the subsequent discussion, we shall consider four hypothetical classifiers and
their corresponding output sets Po, Pas, Py, and P, which only have over, missed,
wrong, and perfect diagnoses, respectively (e.g., in Pp we have y; C 2;,V(Z;,y;) €
Po).

4 Macro precision, macro recall, and macro F;-macro precision and macro recall
cannot be used in isolation, as we are free to change one at the expense of the other.
However, Macro Fi, which is a macro-average of the harmonic means of precision

and recall, is a serviceable metric. Macro £ is defined as:

1 P

P&

_< P)-1r,(P)
P)+ 1) (P)

MacroFy(P) = Fi;)(P), where,

Fi(P) =

Where p;, r; is precision and recall for the j** class respectively. Consider the case
where 7;(Par) > p;(Po) (note, p;(Par) = r;(Po) = 1). Then we have,

2-1;(Pu) o 2-p;(Po)

1 + Tj(PM) -1 +pj(770)
2-pi(Pu) - ri(Pm) _ 2-pi(Po) -ri(Po)
pi(Par) + 7 (Par) pi(Po) +1;(Po)

Fi)(Pu) = Fij)(Po)

v

If this holds for all j, we have the exact opposite inequality as desired, and even if it
is only true for some 7, no guarantees can be made that a system that always misses

diagnoses is worse than one that always over-diagnoses.

4 Micro precision, micro recall, and micro F;—similar to their macro counterparts,

micro precision and recall cannot be used in isolation, but micro £} can be used
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independently to evaluate the quality of a computational diagnostic system. It is
defined as:

2 - micro-precision - micro-recall

MicroFy(P) = — — . , where,

micro-precision + micro-recall
P
. 1p;

MicroPrecision(P) = —» 2 JP , and

Zj:l tp; + Zj:l fpj
P
I,

MicroRecall(P) = —5 21 ;
Zj:l tp; + Zj:l fn;

We know fp; = 0in Py, and fn; = 01in Po. So,

MicroPrecision(Py) = 1

' 2 - MicroRecall(Py) ‘s

MicroF: _ d, similarly,

= MicroFy(Pur) 1 + MicroRecall(Py)’ e, Sy
MicroRecall(Pp) =1

. 2 - MicroPrecision(Po)
= MicroFy(Po) =

icroFy(Po) 1+ MicroPrecision(Pp)

So we have MicroFy(Py) > MicroFi(Po) whenever, MicroRecall(Pys) >
MicroPrecision(Po). This means if two diagnostic systems have the same number
of true positives and one has a higher number of false positives than the other has false
negatives, then MicroFy(Py) > MicroF;(Po). This is the opposite of the desired

ordering in clinical practice, as false negatives are generally more deleterious.

EXAMPLE-BASED METRICS

In the ensuing discussion, we consider predictions m;, o;, and w;, which are missed,
over, and wrong diagnoses, respectively, for the ground truth label y;, and check if
Clinical Order holds. (Note: m; C vy;,y; € 0;, and y; N w; = ¢).

4 Hamming Loss is defined as

1 L1
hl = — —|2; Ay,
0ss(P) ~ ;1 P|z i
So, from the definition, we have:

hloss({(m;,y;)}) = hloss({(o;,y;)}) whenever |y; — m;| = |o; — v
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So, missing k£ diagnoses is penalized just as harshly as producing & over-diagnoses.
Since classifiers are tuned to target certain metrics, it must be noted that Hamming

loss 1s usually not optimal for sensitive systems [56].

4 Accuracy is widely known to be an unreliable measure in a clinical context, where

imbalanced datasets are the norm [151]. It is defined as

1 .
accuracy(P) = — - ,so, if we have |m;| - |o;] > |yi|?
Y N

= accuracy({(mi,v;)}) > accuracy({o;, y:})

Thus, Clinical Order doesn’t hold in general. As an example, consider |y;| =
E > 2|mi| = k—1,]o;] =k + 2, then accuracy({(m;,y:)}) = &1 > A

accuracy({(o;, yi)})- _

4 Subset accuracy is the strictest metric and is defined as

1
SAccuracy(P) = N Z I(z; = v;), so, we have,

SAccuracy({(mi,y:)}) = SAccuracy({(wi, y:)})
= SAccuracy({(0i,4i)}) = 0

which violates Clinical Order.

¢ F score is defined as
2 % 2 Ny
AP) =% Z 2] + lyil

Suppose |y;| = k, |m;| = k — 1 (one diagnosis missed), and |o;| = k + r (r extra

predictions). We have:

Fi({(mi,y:)}) = Fi({(0:,9:)}) whenever r > [%W

So, Clinical Order doesn’t hold in general. As in the case of label-based metrics,
example based precision and recall aren’t meaningful in isolation and aren’t discussed

here.

4 PhysioNet 2020/21 Challenge Metric is defined in Equations 4.12 and 4.13. Since
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wy, 1s integral to the metric, it is limited for use on the PhysioNet 2020/21 Dataset.
Without the weight matrix (i.e., w = I,,«,,) this is the same as accuracy and inherits
all its problems. Even on the PhysioNet 2020/21 dataset, it does not guarantee
satisfaction of the inequality (Clinical Order). Of note are the issues introduced by
their normalization scheme (as defined in 4.13). Consider the scenario where the
ground truth label contains y; = { NSR, a;, ar} (NSR is the normal class), and we
predict 2, = { NSR}, and 2, = {a;}. We have:

1+ wjNsr + WrNsR
3
1+ WNSR,j + Wi, j
3

t(y, 21) = t(y, Zvsry) =

t<y722) =
CM<ya 21) =0

CM(y, 2) = 1+ wysr; +wr; —1—wjNsr — Wik,NSR
' 3(ty,y) — ty, 21))

. Wg,; — WEg,NSR
CM = o) ’
v, %) 3(t(y,y) — t(y, %1))

= CM(y, 22) < 0, for some choice of a; ( As w,j, is symmetric.)

Therefore, this metric discourages detection of cardiovascular conditions, in favor of

detecting the normal class, which is contrary to clinical expectations.

4.2.5. MEDTRIC — A DOMAIN OBEDIENCE
METRIC

In the previous section, we illustrated that most commonly used metrics do not align
well with clinical practice. In this section, we propose a new metric designed to meet

the established criteria and incorporate clinically desirable properties.

DEFINITION

Given P, consider an instance of prediction and label Z;, y;. There are three sets of
interest, Z; N y;, y; — 2;, and, 2; — y;, corresponding to correct predictions, missed
predictions, and extra predictions, respectively (see Fig 4.6). Although y; — Z; and

z; — vy; both consist of errors, the former generally has worse clinical outcomes.
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Missed Diagnosis

Over Diagnosis Ground Truth |:|

Correct Diagnosis Prediction |:|

FIGURE 4.6: The partitions of interest for clinical evaluation. Figure reproduced
from Saha et al. [148].

Since each category poses a unique clinical scenario, we score them as follows:

(

;—] if Cj € Z; N Y;
J
_n—S‘j lf CJ' € Yi — 21
laij =4 71 | . ) (4.14)
n—i[m(zckeyiw]‘k> —1:| lij €z — VY
\O otherwise

where n; is the number of occurrences of diagnostic condition ¢ in the dataset P.
This normalization ensures that the prevalence of diagnostic conditions doesn’t affect

the final scores. n* is defined as follows:
n* = max{n,;|V¢; € y;} (4.15)

{s;|Vj € {1... P}} are significance weights. This reflects the fact that all diagnostic
conditions might not be equally relevant, and classes that are critical have a higher
value of s;, so their contribution to the final score is larger. They can all be set to 1 if

their relative importance is the same.

w,, measures similarity of diagnostic conditions (as in Alday et al. [3]). This gives
partial rewards to over-diagnosis which are of similar nature in outcomes or treatment.
If such a matrix is unavailable or not required, w,; can be set to 0 j # k, and

wjj =1 Vj

If, for a given dataset having P conditions, all 2¥ diagnoses are not possible,

and contradictory pairs exist (hypo- and hypertension, for instance), we can in-
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troduce an additional contradiction penalty term and a contradiction matrix C,, such
that C;;, = 1 if condition c¢; and ¢, can’t occur together (V patient z, x has ¢; =

x does not have c;,).

=1 . S Caife; € 25
[bz]] — nj ZVk st.cpes; ok Jk J (416)

0, otherwise

Then we can compute the score for the " instance as follows:

P

j=1

Finally, we sum the scores over all instances in the dataset and normalize. Consider
Y,Z ={y;|Vi € {1,...,N}},{z|Vi € {1,...,N}}, we have t(Y,Z) defined as

follows:
N

HY,Z) =)t (4.18)
=1

Mmed - t(Y7Y) — t(Y, CI)) (419)

Here ® represents the null prediction set, i.e., Z; = ¢, Vi € {1... N}. This normal-
ization ensures that a perfect classifier gets a maximum possible score of 1, and an
inactive one that predicts nothing gets a score of 0. The metric defined in Equation

4.19 is named MedTric, which is a portmanteau of Medical Metric.

MEDTRIC FOLLOWS CLINICAL ORDER

CLAIM 4.1 MedTric always penalizes missed predictions more severely than extra

predictions.

Proof.  Since we have the following inequalities;

0 <fwljr <1 V{wl, j # k
0< D wlk <1

‘y2| CkEYi

_Z_J<Z_a[ 1} (Z[w]jk)—1] <0

J il nCyi

(n* >n;Vj e {1...P}, by definition)
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missed predictions always have heavier penalties than extra predictions.

This does not demonstrate that MedTric follows Clinical Order, and since such a
demonstration would be dependent on the exact clinical requirements and details
about the dataset, we resort to empirical means in order to validate that Clinical Order
1s maintained by MedTric. However, MedTric does have desirable behavior in most
cases of practical interest. Consider (as in Section 4.2.4) 4 classifiers and their
output sets Po, Par, Pw, and P, corresponding to over, missed, wrong, and perfect

diagnoses respectively, and a specific diagnostic condition ay.

In Py, since only missed diagnoses are allowed, we have fp, =0, 2, — y; = ¢ and
the assigned score is given by Z—i(tpk — fng) where tpy, fpk, fny are the number of
true positives, false positives, and false negatives, respectively, for the condition ay,

in PM

~

Similarly, in Pp since only over-diagnoses are allowed, we have fn) = 0,y; — 2; =

o, tp}, = ny, and the assigned score is given by:

w2 ()

ax¢yi |%| Cj€Yi

Where w;, = min(wy; Vj € {1,..., P})

Where, tp,., fp,, fn, are the number of true positives, false positives, and false

negatives, respectively, for the condition a; in Pp. Consider,

Missed diagnosis score Over-diagnosis score
rsk N ; Sk . ~N
§ = —(tpx — frn) — s — fpk_*<wk -1
N n
Sk ) Nk *
= _[tpk — fng —ny —fpk—* wy, — 1) | (as, tpr + fr = ng)
N n
Sk

= s (1= i) —2- fr

ng
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Now, if & < 0 Vk € {1,..., P}, MedTric follows Clinical Order. Even conser-
vatively, since we have Z—" < land 0 < 1 — wj; < 1 by definition, § < 0 holds
whenever the number of false positives of each condition does not exceed twice the

number of false negatives.

If a broader region of operation is required, wj, can be adjusted accordingly, e.g., if
wj; = 3k, MedTric follows Clinical Order whenever the number of false positives of
each condition does not exceed thrice the number of false negatives. In more realistic
scenarios, however, where prevalence is imbalanced, the region where Clinical Order
holds is much broader. For example, if a certain diagnostic condition is a tenth as
likely as the most frequent one, we have &, < 0 whenever the number of false
positives for the condition is less than 20 times the number of false negatives for that

same condition.

For Py, we have tp, = 0, fn, = nk, 2; Ny; = ¢, and the score corresponding to
ay is given by —s; — fp;vz_]i (1 — w,j) < —sg, which is the lowest possible missed

diagnosis score.

Thus, depending on the clinical context and its associated tolerance for missed
diagnosis vs. over-diagnosis, we can choose the values of wj;, such that MedTric is

guaranteed to follow Clinical Order (see example in Table 4.8).

TABLE 4.8: Example of scoring for missed, over and wrong diagnoses.

0O, M, W, P stands for over, missed, wrong and perfect diagnoses, respectively.
The following subscript number represents the quantity, e.g., O; means one over-
diagnosis. MedTric sorts them in the desired clinical order (labels are drawn from
PhysioNet dataset).

Ground Truth Prediction Type Score
CRBBB, AF, QAb LAD, STach, TInv W3 -0.230
CRBBB, AF, QAb LAD, STach Wy -0.159
CRBBB, AF, QAb LAD Wi -0.081
CRBBB, AF, QAb ¢ M; 0.0
CRBBB, AF, QAb CRBBB M, 0.25
CRBBB, AF, QAb CRBBB, AF M, 0.75
CRBBB, AF, QAb CRBBB, AF, QAb, LAD, NSIVCB 0O, 0.756
CRBBB, AF, QAb CRBBB, AF, QAb, LAD O, 0.918

CRBBB, AF, QAb CRBBB, AF, QAb P 1
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TABLE 4.9: Example illustrating dataset prevalence independence.

Here in the two cases shown above, the underlying classification quality is the same;
conditions A and B are detected 100% of the time, and condition X is detected 50%
of the time; only the prevalence in the dataset has changed (in Case 1, { X, A} occurs
10% of the time and in Case 2, 90% of the time). However, unlike other metrics
(e.g., F1 score), this doesn’t change the MedTric score, thus demonstrating dataset
prevalence invariance.

Prediction— | {X,A} {A} {A B} |Total| F; MedTric

GT: {X, A} |50 50 0| 100

Case 19 GT: {4,B) |0 0 900 | 900 | 0983 0.833
GT: (X, A} |450 450 0900

Case 29 GT: {4,B} |0 0 100 | 100 | 980 0833

DATASET ARTIFACTS

If a computational system is X% accurate in one diagnostic class and Y% in another,
some metrics may change solely due to variations in the proportions of these classes.
Micro-averaged label-based metrics and example-based metrics are particularly vul-
nerable to this issue. Evaluating model performance can be obscured by demographic
artifacts, especially given the common issue of class imbalance in diagnostic datasets
[179].

To address this problem, we suggest normalizing each score contribution by the
corresponding class frequency (see Equations 4.14 and 4.16), ensuring that the final
score is independent of dataset proportions and represents the true per-instance

accuracy (refer to Table 4.9).

Our proposal aligns well with the principles of cost-sensitive learning [39]. As
discussed in the preceding section, our metric imposes a greater penalty for false
negatives (missed diagnoses) than for false positives (over-diagnosis). Furthermore,
we have disentangled the prevalence of diagnostic conditions from performance

measures, recognizing that rarity does not necessarily equate to severity.

Beyond prevalence, diagnostic datasets often incorporate a notion of criticality,
which is not typically reflected in standard machine-learning metrics. This aspect
of criticality necessitates an additional layer of cost-based decision-making. The
significance weights s; (see Equations 4.14 and 4.16) ensure that classifiers that
underperform on critical classes face harsher penalties. These weights are normalized

so they can be interpreted as the contribution of a particular diagnostic class to the
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final score.

Additionally, by introducing w;; and Cj;, we account for interactions between
different diagnostic classes in a manner that is informed by domain knowledge. For
instance, if two diagnostic conditions have similar prognoses or treatment plans,
misclassifying one as the other might be penalized less severely [3]. This framework
can be interpreted as a cost-sensitive learning problem with a cost matrix M &
R2"*2" where every misclassification of a set o € 2* as another set 3 € 24 carries

a potentially distinct cost.

4.2.6. MEDTRIC IN PRACTICE

In the previous section, we demonstrated that our metric ensures compliance with
Clinical Order (i.e., ensuring the scoring aligns with the clinical severity monotonic
order) under certain conditions. We also asserted that MedTric maintains this property
in most practical scenarios. Our analysis suggests that other relevant metrics fail to
adhere to Clinical Order, often in common situations. To facilitate a fair comparison,
in this section, we will evaluate each metric against a consistent set of diagnostic

scenarios to assess their suitability in a clinical context.

Metric scores often rely on the frequency of various classes within the evaluation
dataset, potentially obscuring performance deficiencies in specific classes due to their
rarity. Conversely, our metric is designed to ensure score invariance with changes
in the prevalence of diagnostic conditions. We aim to investigate how often these
conditions are violated (if at all) by the various metrics under consideration. As
computational diagnostic systems, particularly those employing machine learning
methods, are tuned to particular metrics, inconsistencies between these metrics and

clinical practice can lead to model behaviors that are similarly misaligned.

DATASETS AND IMPLEMENTATION DETAILS

In order to measure these, we use three publicly available multi-label diagnostic
datasets from different diagnostic disciplines and modalities. The first is the Phy-
sioNet dataset, which is described in Section 4.1.4. The weight matrix used for
computation of CM and M,,,.4 1s borrowed from the work by Alday et al. [3], and
the contradiction matrix [C];; equals 1 when the pair a;, a; cannot occur simultane-
ously, and is 0 otherwise (see Table 4.1). The significance values were determined
by breaking down the possible diagnoses into three groups, namely supercritical,

critical, and noncritical. A weight of 1 was assigned to supercritical, 0.8 to critical
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and 0.6 for noncritical conditions. Their constituents are given in Table 4.10.

TABLE 4.10: Significance weights for different diagnoses.
1 is assigned to super critical group, 0.8 to critical group and 0.6 to non-critical

group.

Supercritical | Critical |  Non-critical

LQRSV SA STach NSIVCB

TAb Brady |PR  IRBBB

AF LQT |PVC PAC

AFL IAVB | SVPB RBBB

LBBB SB LPR LAD

CRBBB QAb | VPB NSR
LAnFB | RAD

The second is the CheXpert [79] dataset, which contains 224,316 chest radiographs
of 65,240 patients, labeled with 14 classes of findings from frontal and lateral X-
rays. They have uncertainty labels, along with positive and negative labels for all
14 classes.? Finally, we employed a multi-label free text classification dataset[132]
consisting of 978 samples labeled with 45 ICD-9 codes. For both these datasets,
we used [s]; = 1V, [w];; = 2 Vi, 5,1 # j, and [w]; = 1 Vi. [C];; was taken to be
0.

4.2.7. EXPERIMENTS AND RESULTS

CLINICAL ORDER

In order to check violations of monotonicity (Clinical Order), we first sample a data
point (x;, y;) from the dataset D in question. Following this, we generate I" candidate

predictions Z;, such that:

frandom(yi) - éi'y = {am‘P(am S 2i'y|a/m S yz) =D, and,

(4.20)
P(an S 2i7|an ¢ yz) =1- q}

This simple model f,,4om €mulates a classifier that has a sensitivity of p and speci-
ficity of ¢ in each class. Next we group the predictions into several buckets, each

with a particular type of diagnosis (wrong, missed, over, or perfect) and the degree

3All uncertain labels were assumed to be false as per the zeros strategy in Irvin et al. [79].
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(count) of the same.

ty wrong tw—1 wrong 1 wrong
y N " " N ~
Zi(O)a Zi(1)7 s 7Zi(c1)7 s 7Zi(02)7 s 7Zi(C3)7 s 7Zi(C4)7
ty, missed tm —1 missed 1 missed
— — 4.21)
Zi(C4+1)7 s 7Zi(C5)7 s 7Zi(06)7 s 7Zi(66)7 s 7Zi(C7)7
to over to—1 over 1 over perfect
— < < < —
Zi(c6+1)7 s 7Zi(C7)7 R Z’i(Cg)7 ER) Z’i(cg)7 EIR) Z’i(clo)y sy Zz(k‘)

Then, we compute the metric score M ({yi}, { frandom(yi)}) for each candidate group,

and check if monotonicity is followed, i.e.,

/\/l(yi, M/th) < M(yi, VVitwil) <... < Wll)
< M(y;, MI™) < M(y;, M) < ... < M})
< M(y;,00°) < M(y;, O ™1 < ... < M(y;, O)) < M(5:2P)

Where W} = {Z;(,)|2i(,) has t wrong diagnosis} (and similarly for O, M). Then we
repeat this with several (p) samples (X,y) from the dataset to estimate the probability

(7) that metric M follows clinically applicable monotonic order.

We used p = 100 samples from the datasets to probe each metric for monotonicity
with 4 pairs of (p, ¢) and repeated the experiment n = 10 times to gather statistics.
Unsurprisingly, only MedTric obeys monotonicity 100% of the time (see Figure 4.7).
Note that subset accuracy and Hamming loss never obey expected clinical ordering,

thus making them least suited for evaluation of diagnostic systems.

PREVALENCE INVARIANCE

Promising computational techniques often depend heavily on large amounts of data,
yet handling long-tailed datasets remains a considerable challenge. Consequently, if
a diagnostic system excels in one class but underperforms in another-—particularly
when instances from the poorly performing class are rare-—certain metrics might not
effectively highlight this weakness (see Table 4.9). Given that imbalanced datasets
are a common reality in diagnostics, it is crucial for metrics to detect these potential

blind spots accurately.

To test for this property, we select two classes from the dataset a,; and a,, which

are the most and least frequently occurring classes, respectively. Then we create a
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FIGURE 4.7: MedTric is the only metric maintaining clinically applicable order
100% of the time.

The X-axis displays the metric under evaluation, and the Y-axis shows the percentage
of times monotonicity is followed by a particular metric. The experiment is carried
out with 4 sensitivity and specificity settings A — (80%, 95%),B — (80%, 90%),
C — (60%, 95%), D — (60%, 90%) over the three datasets. Hamming loss and subset
accuracy never follow monotonicity. CM was only computed on PhysioNet dataset.
Figure is reproduced from Saha et al. [148].

subset D,, C D of such that
D, ={z|P(ay € %)) =, and, P(a,, € z;) =1 —aVie {1,...,l1}} (4.23)

Thus the dataset contains roughly l« instances of class ay; and /(1 — «) instances of
a,,. Next, we generate predictions ¢rangom (D) based on D, following the protocol
outlined in the previous section with sensitivity pas, p,, for ays, a,, respectively (and
specificity ¢q). The quantity we are interested in estimating is the standard deviation
of the metric, i.e., o(M), which will measure the amount of variation it has when

subjected to variations in the dataset. This is given as:

2

a(/\/l):< R [M(Da,g(Da))Q]— E [M(Da,g(Da))r) (4.24)

a~U(0,1) a~U(0,1)

We estimate this quantity with a Monte-Carlo simulation by drawing 1 samples

from U(0, 1). For our experiments, we set py; = 0.9 (“good” performance for the
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abundant class), and p,, = 0.5 (“poor” performance for the rare class). n = 50
samples were drawn for a ~ U(0, 1), and for each «, [ = 100 samples for a,; and
a,, were drawn to create D,. The experiment was repeated n = 10 times each, for
q = 99%, 95%, and over all three datasets (see Figure 4.8).
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FIGURE 4.8: Dispersion (o) of various metrics with change in dataset prevalence
A -q =95% and B - ¢ = 99%. Metric scores are often dictated by the frequency
of occurrence of certain diagnostic conditions in the evaluation dataset and are not
indicative of the actual performance of the computational diagnostic system. High
dispersion scores indicate that a metric is likely to obscure weaknesses of diagnostic
systems due to relative prevalence of classes. MedTric outperforms other metrics in
this regard. Figure is reproduced from Saha et al. [148].

We consistently observe (see Figure 4.8) that our metric has the least dispersion
and therefore is most likely to capture weaknesses of diagnostic systems that would

otherwise be obfuscated by rarity.

4.3
DISCUSSIONS

In Section 4.1, we further explore the inability of DL systems to adhere to domain

rules, a problem exacerbated by noisy annotations. To combat this, we introduce the
DOST algorithm, which incorporates logical constraint information into DL systems
via self-supervision. We also present empirical studies demonstrating that the DOST
paradigm not only diminishes rule violations, thereby enhancing the alignment of
models with domain rules, but also results in performance improvements. This is
accomplished by repurposing data that might otherwise have been discarded as
noisy. Given that all other variables remain constant across the different training
strategies, we infer that these performance enhancements are likely attributable to

the integration of domain knowledge into the models.

In Section 4.2, we showed that current metrics for evaluating multi-label computa-
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tional diagnostics often fail to capture the intricacies of clinical practice adequately.
Specifically, commonly used bipartition task metrics do not effectively address the
risks associated with missed diagnoses, over-diagnoses, and incorrect diagnoses in a
clinically sound manner. We have also demonstrated that metric outcomes can be
obscured by prevalence, leading to an inaccurate reflection of actual performance.
When transplanting ML metrics to a clinical setting, important clinical features,
such as the relative importance of different diagnoses and appropriate penalties for

unrealistic predictions, have been largely overlooked.

Our metric, however, addresses these key clinical requirements, aligning more closely
with clinical practice. It preserves the order relation between different types of di-
agnostic errors in terms of real-world consequences. Furthermore, it handles con-
tradictions and clinical significance, rewarding models in a manner consistent with
diagnostic practice. This metric allows for straightforward comparison of computa-
tional models tackling the same problem, even when calculated over datasets with
differing diagnostic distributions. Even though MedTric was designed with a clinical
settings in mind, it can be adapted to any MLC problem where domain constraints

can inform the ranking of the various types of errors that a system might make.

Constraint-aware learning and evaluation are equally important considerations for
the deployment of DL systems in critical scenarios. Since models are often tuned
to maximize performance according to a target metric, promulgation of constraint-
obedience metrics would favor adoption of constraint-obedient predictive systems.
Similarly, development of constraint-aware learning strategies such as DOST, ne-
cessitate investigation into constraint-adherence metrics for an accurate assessment
of deployability. Thus, further research into these areas serve to complement and

bolster each other.
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CONSTRAINED INFERENCE

'"Modern LLMs demonstrate remarkable skills in a plethora of language tasks like
reasoning, coding, wordplay, QA, etc. [117, 196]. However, their ability to generate
language in a constrained setting is somewhat under-explored. The ability to control
or direct the generation process in order to meet certain criteria is extremely desirable

in several realms of NLP, but it remains a challenge [134].

These constraints can take several forms, like length limitations, character limitations,
rhyming/meter-based constraints, and restriction to formal languages. As a simple
example, consider the task of poem generation [134], where in addition to thematic
aptness, we must contend with a rhyming scheme. Further, for certain kinds of
poems, like sonnets or haikus, we have extended impediments on the number of
syllables or characters. Similar constraints arise for generation of lyrics where a
certain pattern of stressed and unstressed syllables might be desirable based on the

beats of music.

Constraints also frequently arise when dealing with formal languages like those
defined by a finite automaton or a context-free grammar (CFG) [93]. These problems
have become imperative in the current LLM zeitgeist, since in addition to coding,
LLMs have to interact with databases, application programming interfaces (APIs),

tools, interpreters, etc. In such use cases, generations must follow strictly laid-out

IThis chapter is largely based on our paper titled “Language Models are Crossword Solvers”
[147].
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guidelines to be useful. There is also a growing body of literature studying LLMs as
agents [110] or embodied LLMs [189], and in these use cases, language generation

must follow physical and environmental constraints as well.

In this chapter, we study crossword puzzles, which are a form of word game typically
played using a square grid of black and white squares. The goal of the puzzle is to
fill in the white squares with letters based on provided clues (see Figure 5.1). In
addition to strict limitations on the number of admissible letters for each answer,
crossword puzzles feature further constraints in the form of letter interactions of

various clues.

—_— - — = O T — | N

Synonym  Synonym o monem

Anagram
Synonym Anagram
v
e [ A

» stardom |/ | stardom <

FIGURE 5.1: Example of a crossword puzzle (left) and cryptic clues (right).
(left) The grid must be filled up with answers from the semantic clues provided. The
gray highlighted squares produce additional constraints, e.g., first character of the
answer to clue 1 (across) and clue 4 (down) must be the same. Example by Fred
Piscop.

(right) In cryptic crosswords, the clues involve some form of wordplay and synonyms
and often involve world knowledge. Examples are taken from the cryptonite [36]
dataset. Figure is reproduced from Saha et al. [147].

In this chapter, we first discuss necessary background for crosswords and some
previous attempts at automated crossword solving. We then analyze LLLM’s abilities
at this task and present an algorithm that can solve crosswords with the aid of LLMs.
We finally present experimental results validating the performance of our algorithm
and further studies exploring different aspects of LLM performance with regard to

generalizability, reasoning, and abilities at different linguistic tasks.



5.1 BACKGROUND | 83

5.1
BACKGROUND

Successfully solving crosswords demands a high level of mastery in interpreting

contextual clues, semantics, wordplay, character manipulation, world knowledge,
arithmetics, and reasoning (see Figure 5.1). Additionally, it requires adhering to
constraints such as length restrictions and character overlaps. For wider proliferation
of LLMs, it is essential for them to exhibit the ability to comply with constraints
that may arise from knowledge graphs, formal languages, tabular data, or other
domain-specific demands. Hence, examining crossword solving can improve the
adaptability of LLMs to relatively less explored domains where constraints coex-
ist with linguistic challenges. Given that crossword solving encompasses several
desirable competencies, and identifying areas for improvement could benefit other
linguistic applications, the aim of this chapter is to evaluate the abilities of LLMs in

tackling this multifaceted task.

Clue: Laser-focused mindset (12) Clue: Vegas nickname (7)
Answer: TUNNELVISION Answer: SINCITY

(a) “TUNNELVISION’ is a synonym for ‘Laser- (b) ‘Vegas’, a shorthand for Las Vegas,
focused mindset’ Nevada, is also known as ‘Sin City’.

FIGURE 5.2: Examples of straight crossword clues with explanations.
Examples are taken from xwordinfo.com.

Two kinds of crosswords are studied in this chapter: the first is the American style,
or straight crossword, which typically features denser grids with relatively straight-
forward clues, and solutions typically involve synonyms or world knowledge (see
Figure 5.2 for examples). The other form of crossword studied is the UK style,
or cryptic crossword. These have sparser grids but feature more formidable clues
involving anagrams, homophones, world knowledge, puns, string manipulation, and
a variety of domain-specific tactics. An example cryptic clue and solution is outlined

in Figure 5.3 and further examples can be found in Figure 5.1.

Traditional methodologies for solving straight crossword puzzles comprise two
primary elements: a candidate answer proposal system and a grid-filling algorithm
[6, 55]. The candidate answer proposal systems often employ similarity-based search

on massive clue-answer databases, fine-tuned LLMs, or a combination of both [164,


https://www.xwordinfo.com
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Clue: Culminating point of story about Judy’s husband by the railway track

(5,4)
Answer: PUNCH LINE

FIGURE 5.3: Example of cryptic crossword clue with explanation.

Answering this clue requires connecting “Judy” to the popular puppet show Punch
and Judy, and inferring that “Judy’s husband” refers to “Punch”. Additionally, we
must observe that “railway track” is synonymous with “line”, and combining these
gives “PUNCH LINE” which also means “Culminating point of story”. Example is
taken from lovattspuzzles.com.

187]. Grid-filling, on the other hand, utilizes versions of constraint satisfaction
problem (CSP) algorithms. An example is the system Proverb [104], which achieves
a 98.1% letter accuracy on New York Times (NYT) crosswords. Wallace et al. [187]
fine-tuned BERT and ByT5 on a dataset of 6.4 million clue-answer pairs and, using
a belief propagation algorithm, reached a 99.7% letter accuracy. Kulshreshtha et al.
[96] set benchmarks using foundational language models, underscoring this task as
“... a new high bar for Al systems”. They attempted to solve NYT crossword puzzles
using foundational LMs in conjunction with a Satisfiability Modulo Theory (SMT)
solver, achieving limited success, and ultimately had to prune the crossword grid
based on candidate generations and ground truth answers. Our focus in this work is
to examine the capability of foundational LLLMs at this task, rather than improving

upon automated crossword-solving systems.

Cryptic crosswords pose a greater challenge, and conventional algorithms using large
datasets of clues along with a CFG parser [27] have performed poorly, achieving
only 7% accuracy [146]. Recent research has explored leveraging LLMs to solve
cryptic crossword clues. Efrat et al. [36] compiled an extensive dataset of cryptic
crossword clues from UK newspapers such as The Times and The Telegraph and fine-
tuned a T5-Large [135] model to establish baseline performances. They utilized a
training split ensuring mutual exclusivity between the training and test sets to prevent
memorization. Rozner et al. [141] gathered a dataset from The Guardian and fine-
tuned a T5-Large model through curriculum learning, demonstrating performance
enhancements. They criticized Efrat et al. [36]’s methodology, arguing that a disjoint
train-test split does not sufficiently teach models to solve cryptic crosswords, as
models show “... robustness to plural and other inflections.” Instead, they suggested
grouping similar-root words in a split and found that this more rigorous criterion

led to decreased performance. Sadallah et al. [146] analyze the performance of


https://lovattspuzzles.com
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contemporary LLMs like Mistral-7B [82], LLaMA2-7B [180], and ChatGPT [125]
in few-shot settings, in addition to fine-tuning the Mistral model. They found that
ChatGPT outperformed other models, achieving an accuracy of 9.5%. They noted
several limitations in their study, such as the restricted set of LLMs used and the

potential for data contamination.

These recent studies on cryptic crossword solving with LLMs highlight a significant
performance gap between LLMs and human experts, who solve 99% of cryptic
crossword clues [146]. However, these studies approach the problem as a QA task
and neglect the constraints imposed by the grid. Further investigation is needed to
explore whether an appropriate method that incorporates constraint information into

LLMs can lead to substantial performance improvements.

DATASETS

Our analysis primarily utilizes three crossword puzzle datasets. The first two datasets,
Cryptonite® by Efrat et al. [36] and word-init-disjoint® (abbreviated as Init) by Rozner
et al. [141], pertain to cryptic crossword puzzles. The methodological differences
between Cryptonite and Init, as discussed in the preceding section, are not significant
to our work since we do not perform any training. We randomly selected 2000
samples for reporting results, and in-context examples were also randomly drawn

from a substantial pool of samples that did not overlap with the testing set.

TABLE 5.1: Details of various crossword datasets used.

Results are primarily reported using the NYT (straight), Cryptonite, and Init (cryptic)
datasets. Further, some smaller datasets are used to test for generalizability and
reasoning. The NYT (Grids) dataset refers to a dataset of 100 full crossword puzzles
we collected and contains 7700 clues alongside grid information like their position,
orientation, etc.

Dataset Train Validation Test
Cryptonite 470,804 26,156 26,157
word-init-disjoint 75,847 32,628 33,905
NYT (Clues) 10,000 2,000
NYT (Grids) (test only) 100 grids = 7700 clues
After May 20, 2024 — (post-cutoff)
Lovatts 242
The Guardian 200

2github.com/aviaefrat/cryptonite
3github.com/jsrozner/decrypt


https://github.com/aviaefrat/cryptonite
https://github.com/jsrozner/decrypt
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Finally, we collected a dataset from the New York Times* for our analysis of straight
crossword puzzles. In addition to 12,000 randomly sampled clue-answer pairs split
into two sets—test (2000) and support (10,000)—we collected 100 randomly sampled
Monday crossword puzzles ranging from 20th January 1969 to 7th August 2023 with
all clues (7700) and grid information, which are used to report results for full grid
solving. All three sets are completely disjoint. Most of the results are presented on
the NYT dataset for straight crosswords and Init for cryptic crosswords, as it posed a

greater challenge for LLMs compared to Cryptonite.

Some additional “post-cutoff” datasets,’ i.e., puzzles published after the training
cut-off time of every LLM considered in this study, were collected for testing
generalization performance and analysis of reasoning abilities. Dataset statistics are

summarized in Table 5.1.

MODELS

TABLE 5.2: Models used in this study and their details.

The open weights models were run on a server consisting of 2x 80G A100 NVIDIA
GPUs and were implemented in PyTorch [130] and huggingface [199]. All models
were used in bf16 format whenever supported. The proprietary models were used
with their respective APIs.

Model Params. Context Length Knowledge Cut-off
Phi 3 mini Instruct [1] 3.8B 4K Oct. 2023
Mistral v0.2 Instruct [82] 7B 32K Dec. 2023
LLaMA 3 Instruct [116] 8B 8K Mar. 2023
Mixtral v0.1 [83] 8x7B 32K Dec. 2023
LLaMA 2 [180] 70B 4K Sep. 2022
LLaMA 3 [116] 70B 8K Dec. 2023
Claude 3 sonnet 20140229 [7] ? 200K Mar. 2024
GPT-3.5-Turbo-0125 [126] ? 16K Sep. 2021
GPT-4-Turbo 2024-04-09 [126] ? 128K May 2024

We employed various open-source and proprietary LLMs in our study with varying
architectures (mixture of experts, grouped query attention, etc.) and a wide range
of parameter scales. The details of the model are summarized in Table 5.2. Our
generations were achieved with the random sampling strategy (with T = 0.5) in all
cases, and all other settings were left unchanged. For few-shot prompt responses,

max-tokens were set to 10, and for chain-of-thought [197] responses, max-tokens

“nytimes.com/crosswords
Stheguardian.com, lovattspuzzles.com


https://www.nytimes.com/crosswords/
https://www.theguardian.com/crosswords/series/cryptic
https://lovattspuzzles.com/online-puzzles-competitions/daily-cryptic-crossword/
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were set to 1000.

5.2
PRELIMINARY EXPERIMENTS

In this section we present some preliminary experiments involving various cross-

word subtasks like clue-answering, constraint information incorporation, counting,

etc.

5.2.1. CROSSWORD CLUE SOLVING

Following in the paradigm of Kulshreshtha et al. [96], Rozner et al. [141], Sadallah
et al. [146], and Efrat et al. [36], we first analyze this problem through the lens of
crossword clue answering. Typically, the first step in crossword solving is generating
candidate answers based on clues, in a QA fashion, where the clue and the associated
length serve as the question, and we expect the LLM to come up with the answer.

We test several LLMs with the prompt in Figure 5.4.

[{ "role":"system",

"content”: "You are an expert crossword solver. Given a clue
please provide the best possible answer succinctly. Do
not produce extra text.\n The number of characters in the
answer is given in brackets and must be strictly adhered
to. e.g. Clue: Daily update (4)// means the answer should
have 4 characters."”}{

n,n

"role":"user"”,

"content”: "Clue: <1st in-context example> (length) // <answer>\n
Clue: < ... > (length) // answer 2\n
Clue: < ... > (length) // answer k\n

Clue: <query clue> (length) // "
3

FIGURE 5.4: Few-shot prompt for crossword clue solving.

We used 5 and 10 in-context examples® and reported results with Phi 3 3.8B Instruct
[1], Mistral 7B Instruct [82], Llama 2 70B [180], Llama 3 8B Instruct, Llama 3 70B
[116], Mixtral 8x7B [83], Claude 3 Sonnet [7], GPT 3.5 Turbo, and GPT 4 Turbo
[126] to cover a wide range of parameter scales and a mix of open-weights and

proprietary models. The results are summarized in Figure 5.5.

SFurther increases (25-shot) did not yield performance benefits.
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FIGURE 5.5: Analyzing LLMs’ ability to generate answers from crossword clues.
We test LLMs at different scales on the NYT, Cryptonite, and /nit datasets with
5-shot and 10-shot prompts. All results are with T=0.5, and the figure is reproduced
from Saha et al. [147].

Notably, 5- and 10-shot prompts’ yielded similar performance results, and there is a
significant performance difference (up to 5%) in all models between Cryptonite and

Init, with LLMs showing diminished performance on the Init dataset.

The analysis of model performance across a range of datasets reveals improved
outcomes with increased model scale. On the NYT dataset, we register accuracies
(exact match) of 27.2% for Llama 3 70B, 26.05% for GPT 3.5 Turbo, 37.7% for
Claude 3 Sonnet, and 41.2% for GPT-4-Turbo. While large language models under-
perform on cryptic crosswords compared to straight crosswords, Claude 3 Sonnet
and GPT-4-Turbo manage to surpass previous SoTA results in cryptic crossword
datasets. Their accuracies are recorded at 12.9% and 23.5% on Cryptonite, and
10.8% and 18.7% on Init, respectively. Notably, GPT-4-Turbo achieves a significant
1.97 x improvement over the previous SoTA result, which reported an accuracy of
9.5% as reported by Sadallah et al. [146] (see Figure 5.5).

5.2.2. CHARACTER CONSTRAINT ADHERENCE

During the course of tackling a crossword puzzle, solvers often deal with partly-filled
grids, where solutions to some clues have already been unearthed. These intermediate
states provide valuable hints that solvers strategically use to guide their choices for
the remaining answers. For instance, consider Figure 5.1: when attempting to solve
the clue in position 14 (across), one can leverage the letters already determined from
position 2 (down) and 4 (down). This narrows the possibilities for the answer to

those that match the pattern “_ T _ P”. In this section, we examine the capabilities

"We did not perform experiments with 10-shot prompts on Claude and GPT-4-Turbo due to budget
limitations.
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of LLMs in utilizing such constraints to improve their responses. Our prompting
strategy for this task is similar to the QA task in the preceding section, but we
additionally provide “letter masks”, which are supposed to serve as constraining
information in order to guide generation. When creating a query for a particular test
instance with £% hints, we randomly selected N few-shot instances and ensured
the few-shot examples also had k% hints. The number of characters revealed (h) is

given by the formula:
k
h = max (1,r0und<m X len(answer))) vk >0 (5.1)

h many characters are randomly selected and revealed, all other characters are

replaced with “_”. The prompt structure is given in Figure 5.6.

[{ "role":"user",
"content”: "Clue: <clue 1> (3) // _ _ N => MEN\n
Clue: < ... > (6) // _ _ E _ _ _ => BREATH\n
Clue: <query clue> (length) // X _X="

1

FIGURE 5.6: Prompt used to solve crossword clues with character hints.

For this experiment, we selected the top-performing open weights and proprietary
models, specifically LLaMA 3 70B and GPT-4-Turbo. Additionally, we included
results from smaller models to assess whether the observed trends persist across
model sizes. The evaluation was conducted on the NYT and Init datasets using 5-shot
prompts. In each query, £% of the answer’s characters are provided alongside the
clue and the expected length of the answer. The LLLMs are tasked with “unmasking”
the remaining characters by leveraging the given constraints and the crossword clue.

Our results are summarized in Table 5.3.

As reflected in Table 5.3, for both datasets under consideration, we observe that in
nearly every scenario, LLLMs demonstrate enhanced performance as the percentage
of constraint information increases. Furthermore, to benchmark GPT-4-Turbo against
the previously reported SoTA results by Sadallah et al. [146], we conducted our
experiment using their same settings and dataset split. The findings reveal that
GPT-4-Turbo, with 5-shot prompts, achieves an accuracy of 76.3%, significantly
surpassing the fine-tuned Mistral 7B model’s 27 % accuracy by a factor of 2.8. This

ability of LLMs to effectively utilize constraints for deciphering crossword clues
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TABLE 5.3: Can LLMs exploit character constraints from a partially filled grid?
Sadallah et al. [146] reported an accuracy of 27.0% (70% hinted clues) by fine-tuning
a Mistral 7B model on the Init dataset, which GPT-4-Turbo (76.30% accuracy)
outperforms by a factor of ~2.8x without fine-tuning. All results are with 5-shot
prompts.

0% 25% 50% 70%
NYT init | NYT init | NYT init init

Hint (%)

Mistral 7B 10.95% 1.70% | 9.70% 2.80% | 11.95%  4.80%
LlaMa 3 8B 15.8% 1.30% | 19.7% 2.85% | 24.65%  6.25%
LlaMa370B | 27.20%  6.40% | 31.80% 11.45% | 45.30% 20.35%
GPT 4 Turbo | 41.2% 18.70% | 59.95% 33.70% | 75.75% 52.85% | 76.30%

indicates that they are well-equipped for the comprehensive task of solving entire

crosswords.

5.2.3. LENGTH CONSTRAINT ADHERENCE

Despite notable advancements in performance, SOTA LLMs struggle with adherence
to length constraints, which suggests a difficulty with counting characters within
words or phrases—which we refer to as sub-token counting. Even the highest-
performing model, GPT-4-Turbo, generates responses of incorrect length on 26.2%
and 16.9% of the Init and the NYT datasets, respectively. This challenge may be
attributed to the tokenization technique employed by LLMs, such as Byte-Pair
Encoding [159]. In the transformer model architecture [183], the first layer converts
character tokens to embedding vectors, leading to a loss of information about the
individual characters. This character-level detail must be recovered during training.
While the exact mechanism by which LLMs reacquire this information remains
unclear, it is plausible that they learn from training data that explicitly include length

specifications.

There are websites® that offer extensive lists of words along with their respective
lengths. Often replies on message boards include a count of the number of characters
in a piece of text. Artifacts like these, which contain sufficient information to infer
token lengths, go on to become part of the datasets that LLLMs are trained on. We
propose that LLMs learn to count sub-tokens based on this information provided

during training.

To explore this hypothesis further, we developed a sub-token counting task where the

8word.tips/words-by-length for example.
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FIGURE 5.7: Can LLMs count?

LLMs ability to count the number of characters in a word declines with the unigram
frequency of the word, suggesting that counting is somewhat familiarity-based.
Figure reproduced from Saha et al. [147].

LLM is provided with a sequence of lowercase characters without spaces and tasked
with predicting the total number of characters in the sequence. For the purpose of
testing our hypothesis, we selected three sets of 1,000 English words each, named
Common, Medium, and Rare, based on the word unigram frequencies assembled by
Segaran and Hammerbacher [158] from Google’s Trillion Words corpus. The ranks
for these sets are 1 - 5,000 for Common, 47,500 - 52,500 for Medium, and 95,000 -
100,000 for Rare words.

If language models possess a broadly generalizable ability to perform sub-token
counting, we would expect their counting accuracy to remain consistent across words
of varying prevalence. However, our observations suggest otherwise. As illustrated
in Figure 5.7, the accuracy of LLMs in the sub-token counting task diminishes as the

frequency of the token decreases, a trend evident across all tested models.

To understand whether sub-token counting performance differs between words
included in the model’s vocabulary and randomly generated gibberish with identical
length distributions, we conducted a further experiment.” We first assembled a set of
words by intersecting the vocabulary of every open-source model under consideration
with the list of the top 100,000 words, ensuring that these “words” are extremely

likely'® to be vocabulary tokens across all evaluated models and are not special

°It is possible that the performance dip observed is because rare words are generally longer than
common words.
10This cannot be confirmed for proprietary models.
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tokens (like <bos>, for example). Next, we generated a set of gibberish words by
substituting each character in the vocabulary set words with a randomly selected
character from the set {a-z}, thereby ensuring that both word sets have identical

length distributions.

TABLE 5.4: LLM counting performance for vocabulary words and gibberish.

Model Vocab. [Acc. (%)] Gibberish [Acc. (%)]
Phi 3 3.8B Instruct 79.4 61.2
Mistral 7B Instruct 47.9 28.2
Llama 3 8B Instruct 92.6 69.7
Mixtral 8x7B 92.6 80.1
Llama 2 70B 92.8 80.0
Llama 3 70B 99.6 87.5
GPT 3.5 Turbo 86.0 62.1
GPT 4 Turbo 99.8 98.8

Our findings (see Table 5.4) indicate that counting accuracy not only varies with token
frequency but also shows a significant disparity between the accuracy for vocabulary
words vs. gibberish words. Although these results do not definitively prove that
LLMs depend on memorized instances from their training data to execute sub-token
counting, they provide compelling evidence suggesting LLLMs may indeed learn to

count from artifacts in the training data that contain length information.

5.3
LLM-GUIDED SEARCH

In this section, we attempt to address the challenge of completing crossword grids

with the assistance of LLMs. This problem requires more than merely generating
correct answers for the given clues; it also involves capitalizing on constraints set
by words already placed on the grid. Additionally, it necessitates backtracking to
revise previous candidates that may no longer be valid with the emergence of new
information. Given that LLLMs exhibit the capability to exploit partially filled grids,
when coupled with an appropriate search algorithm, they can potentially be effective

in solving crosswords.

Our proposed algorithm - SweepClip, initiates by generating a set of candidate
answers for all the clues in the crossword (Sweep) and removing any answers that

do not fit using a graph based criterion (Clip). Following this, constraints derived
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from the previously accepted answers are utilized to generate neighboring candidate
answers'! and further prune candidates that do not fit correctly. This strategy is
applied iteratively until one of the following conditions is met: (1) the entire crossword
is successfully filled, (ii) the number of iterations surpasses a predetermined limit
(max_iter), or (iii) the LLLM computational budget is exhausted. Our algorithm
implicitly performs self-consistency checks to improve candidate answers; e.g., an
answer generated at the first sweep may be discarded only to be accepted in later

iterations, when it is consistent with a larger number of other answers.

Formally, a crossword puzzle consists of a grid and a set of clues C' = {¢,...¢,}
and answers (ground truth) A = {a4, ... a,} corresponding to position 7 in the grid.
The grid imposes a graph G = (V, E), where V' = {vy,...v,} is the set of vertices

corresponding to every clue/answer in the crossword, and:

E = {(v;,v;)| Vi,j i # j s.t. a;, a; share a grid position} (5.2)

Given an LLM, and a set of clues C" C C,C" = {c¢j,,¢j,, ...} corresponding to
vertices {v;,, v;,, ...} we can generate candidate answers A = {a;,, d;,, ...}, where
a = LLM/(c). We abbreviate this as A = LLM(C"). For a subset V' of V/, let the
set of clues associated with V' be denoted by C'(V”).

Two candidate answers a;, a; are said to be in conflict, if y-th position of a; and
v-th position of a; are in the same grid position, however a;[1] # a;[v], i.e., the u-th
character of a; and v-th character of a; are different.

~ ~

There are two sub-graphs G,(A) and G,,(A) of G that correspond to a set of candidate
answers A. Let v;, v; correspond to d;,d; € A. An edge (v;,v;) € E is in G,(A) if
and only if a;, a; don’t conflict, else it is in Gn(fl). We call the largest connected
component of a graph H, LCC(H), and for a subset S of vertices V' of a graph
G, ngbd(G, S) denotes the vertices in V' that are adjacent to S but not in S. The

algorithm is detailed in Algorithm 2.

For pruning, we employ the largest connected component from the answers gener-
ated thus far, thereby ensuring a degree of coherence among the selected answers.
While this approach is somewhat restrictive—since isolated answers can indeed be
correct—it proves effective in eliminating incorrect answers at an early stage. This

prevents the propagation of errors by avoiding the use of potentially incorrect con-

"1Using prompts with appropriate letter masks, see Figure 5.6.
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Algorithm 2 : SweepClip

1: Given C, crossword graph G and an LLM.
2: Generate A <— LLM(C).
3: foriin {1,... ,max_iter} do

~

4: Construct G,(A), G,(A)

~

5: L+ LCC(Gp(A)).

6 A« {a;]velL}

7: while G,,(A) has edges. do

8: A max degree vertex in Gn(fl) — Uy
9: Remove v, from G,,(A).

10: A+ A—a,,

11: end while

12: Calculate N < ngbd(G, A).

13: Augment C'(N) with character information.
14 A« AULLM(C(N))

15: if solved or budget_exceeded then

16: break

17: end if

18: end for

straints that could lead to further incorrect answers in subsequent iterations.

5.4
EXPERIMENTS

In Section 5.2, we performed some preliminary experiments to analyze the capa-

bilities of LLMs in the QA clue answering task and sub-token counting. Although
the QA results are promising, it is possible to further improve performance with
prompting techniques like chain-of-thought [197] and self-consistency [193]. Our
results are summarized in Table 5.5 alongside previously reported SoTA results.
Our best result on the word-init-disjoint split is 20.85 %, which improves over the

previous SoTA (9.5%) by a factor of 2.2X without any fine-tuning.

In the following sections we present performance validation results of our SweepClip
algorithm and further experiments testing generalizability and reasoning abilities of
SoTA LLMs.

5.4.1. FUuLL CROSSWORD SOLVING

To report performance results of our algorithm SweepClip (Algorithm 2), we use

the set of 100 randomly sampled Monday NYT crossword puzzles (see Table 5.2).
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TABLE 5.5: Comparison of our results with previously reported SoTA results.
Results are on the Init dataset with crossword clue deciphering treated as QA. SFT
refers to supervised fine-tuning and CoT(1)@3SC refers to Chain-of-thought [197]
prompting (1 shot) with self-consistency [193] (3 samples).

Accuracy
Model Method EM (%)
Rule-based [27] CFG+WordNet 7.3
TS5 [36] SFT 1.1
T5[141] Curriculum Learning 6.5
Mistral 7B [146] SFT 1.2
Mistral 7B [146] 10 shot 4.6
Chat GPT [146] 3 shot 9.5
GPT-4-Turbo (ours) 5 shot 18.70
GPT-4-Turbo (ours) CoT(1)@3SC 20.85

Monday crosswords are typically easier, and we restrict ourselves to them solely to
limit computational cost. We used two LLMs for this: GPT-4-Turbo and Llama 3
70B. The results are produced with a max_iter of 30 and a budget of 0.5 US dollars
per crossword for GPT-4-Turbo and a max_iter of 35 and a budget of 600 LLM
calls for LLaMA 3 70B.

TABLE 5.6: Results from solving NYT crosswords with SweepClip.

% of Crosswords

Error Tolerance [LaMa3 GPTLA4T

100% solved 0 48
< 1 character error 1 55
< 5 character error 10 71
> 90% Accuracy 30 80
> 50% Accuracy 82 98

Our experiments (see Table 5.6) demonstrate that SweepClip paired with GPT-4-
Turbo is able to solve 48 % of crosswords without any errors and 55% of crosswords
with at most 1 wrong character. The average character level accuracy in crossword
solving is 93.1% (4 14.1%). Our algorithm improves the clue-wise answer ac-
curacy'? (exact match) to 89.6% (& 16.9%) from the base accuracy (without the
algorithm), which is 43.5% (£ 23.5%), an improvement of 2.1x. The previously

12Clue level accuracy is different from character level accuracy [96]; e.g., it is possible to have a
filled-in crossword without deciphering all clues.
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reported SOTA accuracy on this task with a foundational LLM (without fine-tuning)
was 26 % with retrieval-augmented generation and an SMT solver coupled with an
oracle that eliminates parts of the crossword grid that do not have suitable generated

answers [96].

When we apply our algorithm with the smaller LLaMA 3 70B model, the overall
performance does degrade; however, the final clue-answering accuracy still sees
an uplift, reaching 59.4% (4 24.1%) compared to a baseline of just 22.3% (+
14.4%). Thus, through the application of our algorithm, we’ve exploited constraint
information to enhance LLLM performance, significantly overtaking QA techniques
typically employed for clue deciphering. To the best of our knowledge, this is the
first demonstration of an algorithm that successfully solves crosswords utilizing
out-of-the-box LLMs.

5.4.2. GENERALIZABILITY

DATA CONTAMINATION

We observed significant performance gains in SOTA LLMs across the board, which
might point to potential data contamination, i.e., the models have seen some of the
clue-answer pairs during training. To ensure that our observed performance enhance-
ments were not merely a result of data contamination, we assembled additional
datasets consisting of cryptic crossword clues, all sourced from puzzles released after
May 20, 2024, which is after the knowledge cutoff for all LLMs evaluated (see Table
5.1). To guard against any inadvertent duplications, we checked the answers in these
post-cutoff datasets against the entire pool of cryptic crossword datasets utilized
within our study, totaling 665,497 answers. We found no duplicates in the post-cutoff
Guardian set and only two in the post-cutoff Lovatts set, which were removed. The
Init dataset is also derived from The Guardian, ensuring that the results displayed in

Table 5.7 maintain consistency.

Since no appreciable difference in performance on the post-cutoff dataset (see Table
5.7) is observed, we conclude that these LLLMs can generalize beyond potential

contamination in their training set.

HUMAN EVALUATION

To determine the capacity of models to reason about cryptic crossword clues, we

perform human evaluation. We used a 3-shot Chain-of-thought prompt to elicit a
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TABLE 5.7: Performance of LLMs on post-cutoff datasets.

Note, Init by Rozner et al. [141], also sourced their data from The Guardian, thus
these results provide a fair head-to-head comparison of performance. We report exact
match (%).

Model Lovatts Guardian Init
Llama 3 70B 26.03% 55% 6.4 %
Claude 3 Sonnet 46.28% 12.5% 10.8%
GPT 4 Turbo 61.57% 185% 18.7%

reasoned response to crossword clues from GPT-4-Turbo, which are then analyzed
for soundness vis-a-vis factual and logical errors. In checking whether a justifica-
tion for an answer given by the LLM is logically and factually sound, we assess
grammatical soundness and phraseological meaningfulness of the sentences in the
answer, the existence of counterfactual statements (e.g., “BULKY has 4 characters”,
“the initial letters of ARE RATS TIRED NOW are ARTS”, etc.), and whether it
presents a statement as an inference from previous statements when it does not
follow from those, etc. If an answer by the LLLM is found unsatisfactory in any of
these aforementioned areas, it is labeled unsound. All responses were evaluated by
3 annotators'® and in case of conflicting answers (4 out of 100, Fleiss’ x = 0.94),
discussions were held to reach a consensus. We chose the 100 samples from the

post-cutoff Lovatts set for this to allay concerns of contamination.

TABLE 5.8: Results from human evaluation.

An answer is called correct if the model prediction exactly matches the ground truth.
The answer is called sound if it contains no logical or factual errors. Results are with
GPT-4-Turbo on the post-cutoff Lovatts set.

Sound —Sound

ohH (39
Correct (65) [ 48% | 17%
Wrong (35) | 13% | 22%

The results (see Table 5.8) show that 74% of the time GPT-4-Turbo provided a
correct answer, it also gave sound reasoning in support of the answer. This leads us to

conjecture that they possibly have a significant ability to reason and generalize.

3authors of Saha et al. [147].
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POTENTIAL PITFALLS

To further analyze if LLMs demonstrate any common failure modes, we manually
tagged the human evaluation dataset based on the principal skill required to solve a

particular puzzle clue. The skill-based categories are:

* ANG-the answer is an anagram of some words of the clue (e.g., Cubit is
mixed up cookie — BISCUIT).

* HOM-the answer is a homophone of some words of the clue (e.g., Heard

prints are for royalty — PRINCE).

* CNT-the answer is disguised in a contiguous section of the clue (e.g., The
Press leaves presenter s to go in — ENTER).

* SCJ—-the answer is found by combining several words that are synonyms of
various parts of the clue (e.g., Reasonable food allowance for Capone
— RATION AL ).

* OTH-this class lumps together a variety of other skills like Spoonerisms,
acronyms, world knowledge, and various other kinds of character manipula-
tions (e.g., Pi per loses heart on jetty — PIER).

TABLE 5.9: Are there common failure modes for LLMs?

ANG refers to anagrams, SCJ refers to synonym conjugation, CNT refers to con-
tainment, HOM refers to homophones, and OTH refers to others. The percentages
in parentheses refer to the prevalence of a particular type of clue in the database.

ANG CNT SCJ HOM OTH
Q7%) (26%) (18%) (8%) (21%)

GPT 4 Turbo 74% 56% 50% 100%  67%

(a) Results for Lovatts dataset (human-annotated).

Lovatts

Init+Cryptonite ANG CNT
P (8.5%) (2.5%)
Llama 3 70B 2.6% 12.2%

Claude 3 Sonnet 79% 15.3%
GPT 4 Turbo 25.0% 33.7%

(b) Results for Init+Cryptonite dataset.

Due to the limited number of human annotations, our results (Table 5.9a) are not

statistically significant; however, these results hint at the fact that GPT-4-Turbo
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demonstrates strong performance in anagrams and homophone-based clues, boasting

74% and 100% accuracy, respectively (baseline'* - 65%).

We extended this analysis to the Cryptonite and Init datasets (Table 5.9b), which
together include 4000 clue-answer pairs, finding similar trends: GPT-4-Turbo main-
tained respectable anagram performance with 25% accuracy over a 21.1% baseline.
Conversely, Llama 3 70B recorded a meager 2.6% accuracy, lagging behind a 7.16%
baseline, and Claude 3 Sonnet mirrored this trend with 7.9% accuracy compared to
an 11.85% baseline. These findings suggest that Llama 3 70B and Claude 3 Sonnet
may struggle more with anagram-based clues. It should be noted that unlike (ANG,
CNT), categories like (HOM, SCJ, OTH) cannot be reliably identified automatically,

presenting a limitation in broader analysis for these types of clues.

To better understand the influence of sub-token counting performance on clue-solving
capabilities, we crafted an additional experiment. We consider all such clues where
the model successfully interpreted the clue’s semantics but failed to comply with the
specified length constraints (e.g., LECTURER instead of PROFESSOR or NANNA instead
of GRANNY). We counted the number of wrong LLM predictions with high semantic
similarity to ground truth answers."> We found that GPT-4-Turbo and Llama 3 70B,
respectively, produced length error predictions 46.4% and 59.9% of the time. These
findings underscore how weak length constraint adherence ability severely hampers

the clue-solving potential of LLMs, highlighting a key area for improvement.

14Baseline refers to mean accuracy across all kinds of clues.
15Similarity score of 0.5 or higher as measured by OpenAl text-embedding-3-large
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CONCLUSION

There have been undeniably massive strides in the capabilities of modern deep
learning-based systems, as evidenced by their widespread adoption across several
fields. However, their inability to leverage established domain-specific principles
is inexpedient. Furthermore, their tendency to violate these principles is a major
hindrance to their adoption in critical fields like medicine, law, industrial automation,
robotics, avionics, etc., where data-driven decision models must operate within
domain-specific constraints. An approach to learning that acts within the framework
of laid-out rules and leverages these rules alongside data to improve predictive

performance is a key objective of deep learning research.

This dissertation first analyzes deep learning-based systems with regard to their
ability to adhere to domain constraints when learning from data alone. A persistent
sentiment echoed by many researchers probing this area is the dearth of large-scale
rule-supported datasets; to address this issue, we put forth a large-scale logical
understanding evaluation dataset with rule annotations. This dataset helps us demon-
strate that large-scale training with an abundance of data does not guarantee domain
obedience. Similarly, intervention-based approaches allow us to show that language
models are not semantically faithful, i.e., they do not behave in accordance with
domain expectations. Following this, a new technique to improve constraint adher-
ence is presented, and issues with the current paradigm of domain-blind evaluation

of models are highlighted. Finally, we explore domain coherence in the frontier of
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deep learning-based natural language research—large language models—and propose

techniques to improve their domain obedience.

Domain knowledge-aware deep learning promises to be a major milestone towards
scientific applications of deep learning. In this vein, we undertook a preliminary study
attempting to address a problem arising from cosmology, where the known laws of
physics serve as constraining information. Results from this study are presented in

Appendix A.

The findings in this dissertation are a step towards a general framework for data-
driven learning systems that operate within and learn from domain-specific require-
ments, and they pave the way for encouraging future research opportunities. In
particular, agentic systems that reason toward achieving goals could greatly benefit
from domain-knowledge guidance, and further work addressing this challenge would
be compelling. Additionally, a natural extension of this work is to couple constraint-
aware models with contemporary explainability techniques. Such integration would
allow us to assess whether the model-generated rationales align with the underlying
domain rules and could facilitate the creation of a transparent and consistent audit

trail.

While the focus of this dissertation has been on advancing the applicability of
deep learning-based systems in domain-specific contexts, it is also vital to consider
the broader societal implications of these technological advancements. Although
widespread use of automation technologies holds significant promise, it also threatens
the economic futures of large swathes of the population in the current societal
landscape. Policy shifts prioritizing strong social safety nets are crucial for mitigating

these effects.
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Appendix A

COSMOLOGICAL CONSTRAINTS

!Constraint-aware DL techniques enable the application of DL towards solving
scientific problems. In this Appendix, we explore such a problem arising from the
field of cosmology. In addition to constraints imposed by established laws of physics,
this problem presents extra hurdles, such as the samples not being independently
and identically distributed (i.i.d.) and the datasets being extremely limited in size.
We discuss the process involved in developing a first-of-its-kind technique to tackle
these challenges from the ground up and present empirical results to validate our

technique.

One of the core challenges in cosmology has been measuring distances. Several
methods to indirectly estimate distances to far-flung objects have been devised, each
having its own region of operation. In addition, the aptly named cosmic distance
ladder principle allows us to calibrate the various measurements using the potential

regions of overlap between these disparate measurement techniques.

In the conventional distance ladder approach [138], we start with geometric measure-
ments of nearby objects as the first “rung” of the ladder. These measurements are
then used to calibrate Cepheid variables [49] or Tip of the Red Giant Branch (TRGB)
stars [50]. Finally, using these measurements, we estimate distances to the Type la

supernovae (SNIa). On the other hand, the “inverse” distance ladder begins with the

IThis appendix is largely based on our paper titled “LADDER: Revisiting the Cosmic Distance
Ladder with Deep Learning Approaches and Exploring Its Applications” [162].
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Cosmic Microwave Background (CMB), and through various intermediate steps,
ultimately extends to SNIa at lower redshifts [16, 24]. SNIa are favored as the final

step for both ladders due to their reliability across a wide range of redshifts.>

The current standard model of understanding of the evolution of the universe is A
Cold Dark Matter (AC'D M), which has six free parameters that must be computed
from observational data. However, employing this model alongside observational
data has led to some inconsistencies—the most notable of which is the Hubble
tension [12, 64, 122]. This, alongside a growing list of other issues has prompted the

cosmological community to device more complicated models or look for “model-free’

approaches to the cosmic distance ladder paradigm.

Alongside cosmography [184], which utilizes a Taylor series, several other methods
like Gaussian processes, genetic algorithms, etc., have been studied in this context
[8, 90, 102, 120]. However, ambiguity over polynomial degree, choice of kernels,
convergence issues, overfitting concerns, and overwhelming errors in data-scarce
regions, have hindered widespread adoption of these techniques [77, 123]. Owing to
these shortcoming, DL-based approaches have gained prominence in this domain
[30, 31, 40, 54, 58, 59, 105, 114, 119, 124, 176, 190, 191, 201, 212, 215]. Despite
several advances, DL-based methods have not been able to extrapolate observational
data to data-scarce regions in a consistent manner while taking into account all the
available aleatoric noise information. To this end, we device a novel algorithm from
first-principles called LADDER (Learning Algorithm for Deep Distance Estimation
and Reconstruction) which is the first constraint aware DL-based solution to this

problem.

In the following sections we first formally state the problem and the associated
constraints, followed by a presentation of our solution and elaborate on the design

decisions. Finally, we present experimental results validating our approach.

A1
BACKGROUND

2Redshift here refers to the frequency of the observed light being reduced owing to the object
moving away from the observer as a consequence of the Doppler effect. Edwin Hubble first noted that
there is a correlation between the distance to a stellar object and the speed at which it is moving away
from the Earth. Given this well-established relationship, distances are often talked about in terms of
the amount of redshifts.
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DATASETS
Our study features the Pantheon [156] and Pantheon+ [157] SNla datasets. The

Pantheon compilation features data from 1048 spectroscopically confirmed SNIa
covering a redshift range of 0.01 < z < 2.3, with most of the samples being on the
lower end of that redshift range. The Pantheon+ dataset is similar and features data
from 1550 distinct SNIa over a redshift range of 0.001 < 2z < 2.3 and has a higher
density at the lower redshift range (see Figure A.1). There is some overlap between
the datasets, and we reserve the 753 data points in Pantheon+ that are not in the

Pantheon compilation for testing.

B Pantheon+
250 mmm Pantheon

200 -

150 -

100 -

Number of SNIla

504

10-3 10-2 101 109
Redshift (z)

FIGURE A.1: Distribution of the Pantheon [156] and Pantheon+ [157] datasets.
Pantheon+ covers a wider range of redshifts with a higher density at lower redshifts.
Figure is reproduced from Shah et al. [162].

In addition to the apparent magnitude (m) and the associated error (Am,), at various
z, the datasets contain [Csys]ij which corresponds to the covariance between sample
tand j Vi, j.

FORMAL PROBLEM DESCRIPTION

Given the Pantheon dataset, D = {(z;, m;, Am;)|Vi € {1,... N}}, where z;, m;,
and Am,; € R, which is drawn from some a priori unknown distribution, and Ciy,
we are interested in estimating the distribution of P(M = m|z) V z € R with the
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assumption P(M = m|z) = N (ug(z), 09(2)), for some functions 11y, 09 and some
parameter 6. In the typical empirical risk minimization paradigm, this can be restated

as - given (D, Cyy) find f : Z — R?, such that for any new input z, we have:

min £{f], (A.1)
U = 5 N, Am) NG ) (A2

for some class of functions F and loss /. £ is the empirical risk functional. We choose

¢ to be the KL-divergence since we seek to model the distribution of m(z).

Although we seek to interpolate from the dataset, this is not a standard regression

problem since we have:

N
P(my,ma,...,mn|21,20,...,2n8) # HP(mzlzl) (A.3)

i=1

Thus, we have to contend with the following intractable empirical risk:

EMPLf] :€<N((m1,m2, LM, Zm)’

(A4)
N((F Ol Gl L ), )

for some covariance matrix ,,, > ;. We also have a few constraints based on known
laws of physics—(i) m(z) is monotonic, i.e., m(z1) > m(z2) Vz1 > 29, and (ii) m(z)

is at least once differentiable.

A.2
LADDER ALGORITHM

We first make a simplifying assumption to deal with the empirical loss given in

Equation A.4. We assume that at most /& samples from the dataset are correlated and

rewrite the empirical risk as:

1
e g D (N (). ).
K/ all combinations (AS)

N (U Ga)lis - [F )10, =) )
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where XX is the K x K sub-matrix of covariances, and [X£], , = [3,,];. ;.- Note
that this approach does not ignore other correlations, since we minimize risk over
every possible combination of samples from the dataset. This motivates our choice

of the modeling function to be of the form:

fo:R*ETT S R xRY,

Jo(25 251, Zjgs oo Zje 1y My, Mgy oo M) = (02, (A.6)

N(MZ, Jz) ~ P(m|z’ Zj1y Bjas -+ Rjr—1 Mgy Mgy - - ‘mjKA)'

Our objective then is to minimize:

1 N
EMP[fo] = Z Z€<N(mka Amy), (A7)
(K ) all combinations k=1
J15---JK
N (fo(z; 215 24, - - .mjK_l)),
((P,Q) = Dkr(P||Q) =>_ P(x log ; (KL divergence)
reX

This simplified problem can now be addressed with standard DL techniques.

Algorithm 3 : LADDER

Given D, Csy, and batch size B.
Initialize 6.
while not StopCondition do
[+ 0
for:=1,2,... Bdo
Get K samples from D — {(z1,m1, Amy), ... (zx, mK, Amg)}
Sample  17,, My, ... T,
~ N (mjy, myy, ...y, B8) > see Equation A.8
Xi= ((Z]é?mjé): (Zjav mj3)v SO (ZjK7mjK); Zj1)
Yi = (my,, Amy,)
o [fo, (X1, 0 < [fo,(Xi)]2 > Forward pass.
[ += DKL<N(m]17Am]1)aN( ))
end for
Compute Vy,l V0,
0111 < Adam(Vy,, 0, €, 51, .. .) > Gradient update.

if ... then > Check for convergence.
StopCondition < True

end if
end while
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The training algorithm is outlined in Algorithm 3. During training, we choose K
samples from D and randomly designate K — 1 of them as “support” and the remain-
ing sample as qguery. To take the covariances into account, instead of directly using
these data points, we sample from the joint distribution N (m,, m;,, ... mj,, 55)

. A~ A~ A K . . .
to obtain m,, mj,, ... m;, , where ¥, is given by:

[Csys}aﬁ ifa # 8
(Amo{)2 ifa=0 (A.8)

25w = Bmljng, Yu,ve{l,... . K —1}

[Emla,s =

Following this, we reorder the samples to be in sorted order, i.e., z;, < z;, whenever
Ja < jbs as this was found to aid adherence to the monotonicity constraint. * Finally,
we construct a training instance X = ((2j,,75,), (Zjg, My )y -, (Zjr, Mjr )i Z51)
and Y = (mj,, Am;,) and use the Adam optimizer [91] to train a NN with the

following objective:

Y) = Dyt (N, Amy) || N[O (D) (A9)
é = arg melnE[gmstance] (A.10)

ginstance (

During inference, given z, we sample S sets of K — 1 points from D and consider

the joint distributions A((m! ]2 e 7m§2_1>7 YEYVi e {1,...,S}. From each joint
distribution, we sample (77 g), ce mggﬂ) to create
Xlgfl)seen - (( ](?7 mg?)> sy <Z§2,17m§271); Zunseen) (All)

We then use the trained NN f;, to compute 1), o®. We wish to model P(m|z) =
fn,...,zK P(m|2; 2j,, . - Zjge_ysMyy, ... M, )dp, which can be approximated by the

Monte Carlo method using the definition in Equation A.6 as follows:

i unseen 0-<_1
P(nlz) ~ N(p,)

un%een

- (A.12)

Mm

~.

This proxy objective asks—based on K — 1 (support) points from the dataset—to

predict (m, Am) corresponding to the point of interest (query). This approach is

3The function fy is always at least once differentiable almost everywhere in DL.
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robust to perturbations because we not only sample from the joint normal distribution
to generate inputs, but also randomly vary the support points corresponding to each
query point. Another consideration is consistency, i.e., if we re-instantiate the algo-
rithm with different random seeds, our predictions should not change considerably,

and this approach was found to satisfy this criterion.

A.3
EXPERIMENTS

Our network of choice for training with the objective in Equation A.10 is an LSTM

[72], and we employed a 2-layer LSTM, with a further FC layer projecting the
final hidden state to R2. At the outset, we perform some validation experiments
with a 80% — 20% held-out split of the Pantheon dataset. In addition to perform-
ing ablation tests of our algorithm, we check performance in three key metrics of

importance:
1. MSE on the held-out validation set.
2. Monotonicity—given by Spearman correlation.
3. Smoothness defined as Smoothness[fg] :== = 37" | | ¢ (z;)|.

Additionally, we also tested MLPs and other ML techniques like k-nearest neighbors

(ENN) and support vector regression (SVR) to serve as baselines.

TABLE A.1: Performance of various ML models.

In addition to MSE on the held-out set, we study constraint adherence vis-a-vis
smoothness and monotonicity. [}] indicates lower is better, [1] indicates higher is
better.

Model MSE [||] Monotonicity [f] Smoothness [|]
kNN (k=5) 0.022116 0.99999 90.67500
SVR 0.019358 1.0 3.10633
MLP (K=1) 0.022202 1.0 2.21691
MLP (K=32) 0.020484 0.99997 88.99974
LADDER 0.018495 1.0 2.30022

We start by examining the effect of the parameter A (see Figure A.2, Table A.1),
i.e., support size, on the performance of tested models and found that the LSTM
with K = 32 performs best in terms of error on the validation set. The X' = 1 MLP,
1.e., standard regression without LADDER, was the smoothest, followed closely by
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Accuracy Smoothness

10° 4 —— LSTM
0.022 4 MLP
0.020 4 /\ N
0.018 4 -~ \/ ST 10" o
MLP
T T T T T T T T T T T

mean(|f])

mean(||5 — y||%)

Variation with A

=
<

—e— LSTM
1.0 4

%

0.5 4

Spearman

o
L

MSE(f[E], £[2o])

0.0 4
T

T T T T T T T T T T T T
20 2! 22 23 24 25 26 27 0.000 0.062 0.125 0.250 0.500 1.000

FIGURE A.2: Results of ablation and validation experiments with various mod-
els.

Panels i, ii, and iii show variation of error, smoothness, and monotonicity perfor-
mance with a changing value of K, respectively. MLP models do not produce smooth,
monotonic results (except K=1), and the X' = 1 MLP is outperformed by the LSTM
model at roughly the same smoothness and monotonicity. Panel iv shows the varia-
tion in the prediction as measured by MSE between models trained with >, and .
When the covariance matrix is progressively corrupted with noise, the predictions
change, thus demonstrating our approach’s ability to model correlations. Figure is
reproduced from Shah et al. [162].

the LSTM trained with LADDER. Although monotonicity violations are rare, the
MLP and kNN approaches underperform in this regard. We conclude that the LSTM
network with K = 32 trained with the LADDER approach is the best performer

overall.

To ablate the effect of the covariance matrix, i.e., to investigate whether LADDER

can effectively model the correlation information, we construct:
Sh = AN + (1 — \)Cyys + Ly ((Aml)Z, (Ams)?, ... (AmN)2)> (A.13)

where N := A x A” is by construction a symmetric positive semi-definite matrix,
such that A;; ~ N(0, 1) is Gaussian noise. Note, A = 0 corresponds to the no-noise
case and is equivalent to ., as defined in Equation A.8. We then train LSTMs
following the LADDER algorithm with varying ), i.e., varying levels of noise added
to the non-diagonal elements of the covariance matrix, and measure the effect of
noise on the final network predictions. We find (see Figure A.2) that predictions
vary consistently with increased amounts of noise, thus suggesting that the LADDER

algorithm imbues this correlation information into the network.
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Finally, we compare the performance of the LSTM network trained with the LAD-
DER approach on the unseen Pantheon+ dataset (see Figure A.3). Our algorithm
accurately models the distribution of apparent magnitude data over a wide range of
redshifts with consistency and constraint adherence while taking into account sample

correlations.

25.0 1
22.54
20.0 1

N 1751
&

15.0 -

12.5

—— LADDER Mean
10.0 LADDER 1o

¢ Pantheon+
75 B T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

V4

FIGURE A.3: LADDER predictions compared to the Pantheon+ dataset (unseen).
Figure is reproduced from Shah et al. [162].

Successfully modeling the distribution of m(z) over a wide range of redshifts has
various cosmological implications, such as being useful to calibrate other datasets
following the cosmic distance ladder paradigm, or serving as a mock data generator
[161, 162]. A detailed discussion on further cosmological implications is outside the

scope of this dissertation and can be found in Shah et al. [162].
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