Language Models are Crossword Solvers

Soumadeep Saha, Sutanoya Chakraborty, Saptarshi Saha, Utpal Garain Indian Statistical Institute, Kolkata

OBJECTIVES

M	² O	³ C	⁴ 5		⁵ A	⁶ S	⁷ O	⁸ ل	9 L		10	11	12	13	Across : 1. Comfy shoes
14	T		Ρ		15 N						16				5. "Don't tell 10. Toot one's o horn
17	0		E	18	0						19				14. Straddling 15. Peter of Her v Hermits 16. Defaulter's l 17. Lake Erie Pe 19. Flying "A" n
20	E		С		R					21					
				22	A			23	24						20. Servers at s 21. Relay need
		25	26		K		27					28	29	30	22. "Don't think 23. Used the cus 25. Maki, for on
31	32						33					34			31. Still in the
35					36	37					38				Down :
39				40						41					1. Drudge of th Internet 2. Siouan tribe
42			43					44	45						3. RC, for one 4. Job detail, fo
			46					47							short5. Arctic outer6. Give comfor
48	49	50					51				52	53	54	55	7. Sounds of aw8. Prefix with c9. Writer Roste
56					57	58									10. It's visible days 11. Take ten
59					60						61	\vdash			12. Lhasa 13. Rink thug
62					63	<u> </u>		<u> </u>			64	+	+	+	18. Cut a rug 21. Stereo knol

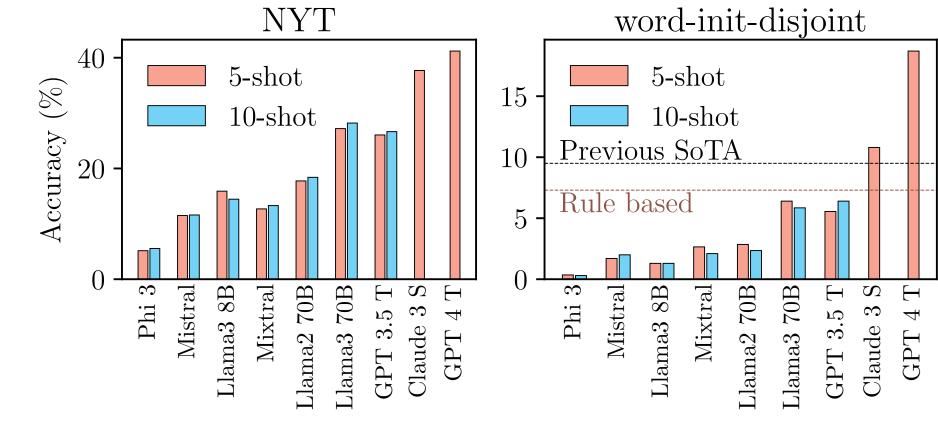


Figure: SoTA LLMs with 5-shot prompts can answer crossword clues.

Hint (%)	0	%	25	5%	50%		
	NYT	init	NYT	init	NYT	init	
Mistral 7B	10.95%	1.70%	9.70%	2.80%	11.95%	4.80%	
LlaMa 3 8B	15.8%	1.30%	19.7%	2.85%	24.65%	6.25%	
LlaMa 3 70B	27.20%	6.40%	31.80%	11.45%	45.30%	20.35%	
GPT 4 Turbo	41.2%	18.70%	59.95%	33.70%	75.75%	52.85%	

SUB-TOKEN COUNTING

SoTA LLMs struggle with adherence to length constraints, i.e., they show an inability to count characters within words or phrases (sub-token counting). If LMs could count, we should see no difference in performance across words with different prevalence, however, we find a significant difference in counting accuracy between vocabulary and gibberish words (Tab. 4).

Model	Vocab. (%) Gibberish (%)			
Phi 3 3.8B Instruct	79.4	61.2		
Mistral 7B Instruct	47.9	28.2		
Llama 3 8B Instruct	92.6	69.7		
Mixtral 8x7B	92.6	80.1		
Llama 2 70B	92.8	80.0		
Llama 3 70B	99.6	87.5		
GPT 3.5 Turbo	86.0	62.1		
GPT 4 Turbo	99.8	98.8		

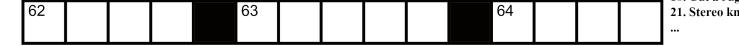


Figure: Example of a crossword puzzle.

- Constrained language generation with LLMs. Crosswords are a type of constrained word puzzle requiring proficiency in understanding contextual clues, semantics, wordplay, character manipulation, arithmetic, worldknowledge, multi-hop reasoning, etc. (see Fig. 1, 2).
- ► Analyze LLMs' ability at this task with the primary goal of understanding strengths and weaknesses demonstrated by SoTA LLMs.

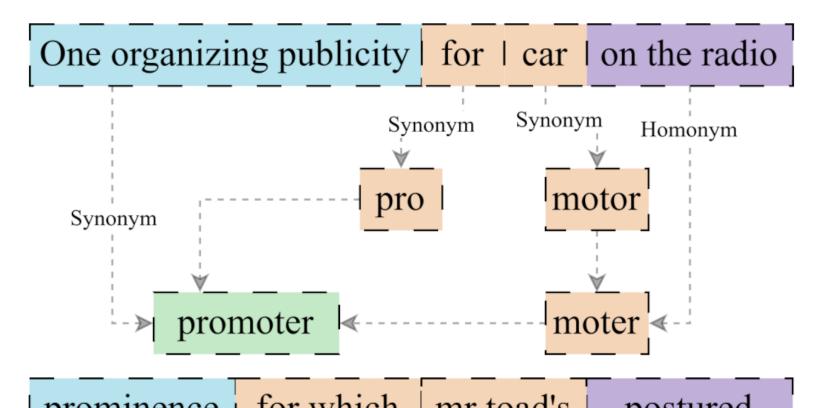


Table: LLMs can improve by exploiting character constraints. [6] reported 27.0% accuracy (70% hinted clues, fine-tuned Mistral). GPT-4-Turbo (76.30%) accuracy) outperforms it by a factor of \sim **2.8** \times without fine-tuning.

SWEEPCLIP ALGORITHM

- We address the problem of filling crossword grids with LLM assistance.
- This task involves constraint satisfaction in addition to answer generation.
- Our algorithm first generates a set of candidate answers for all clues (sweep) and uses a graph-based criterion (largest-connected) component) to eliminate answers that do not fit (*clip*).

Table: LLM counting accuracy is affected by prevalence of words.

To measure the effect of sub-token counting performance on clue-solving, we consider all such clues for which the model correctly deduced the semantics of the clue but failed to adhere to the length constraints (e.g., LECTURER \leftrightarrow PROFESSOR, NANNA \leftrightarrow GRANNY, etc.). GPT-4-Turbo and Llama 3 70B produce predictions with length errors 46.4% and 59.9% of the time, respectively, suggesting that this is a major roadblock.

CONCLUSIONS

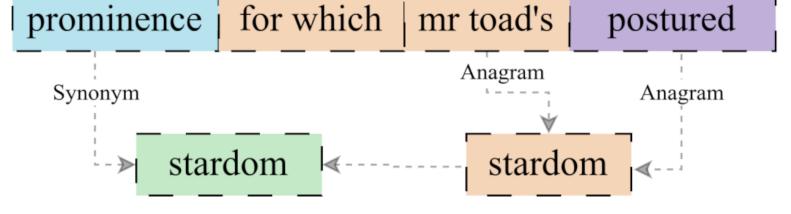


Figure: Examples of cryptic crossword clues.

BACKGROUND

There are specialized *straight* crossword puzzle solving systems, reliant on large clue-answer databases and CSP algorithms [4, 7]. Our aim is not creating a specialized crossword solver, but employing LLMs for constrained generation. Solving *cryptic* crosswords with large clue datasets and a CFG parser [1] has shown poor performance, as has training small LMs (T5) [2, 5, 6]. [3] attempted to solve NYT crossword puzzles with LMs and an SMT solver with limited success.

Following this, we use the constraints from the previous step to generate more candidate an-

swers.		
Error Tolerance		Sswords GPT-4 T
100% solved	0	48
\leq 1 character error	1	55
\leq 5 character error	10	71
$\geq 90\%$ Accuracy	30	80
$\geq 50\%$ Accuracy	82	98

Table: Results from solving NYT crosswords with our algorithm SweepClip.

GENERALIZABILITY & REASONING

Model	Guardian	init
Llama 3 70B	5.5 %	6.4 %
Claude 3 Sonnet	12.5%	10.8%
GPT 4 Turbo	18.5%	18.7%

Table: No performance dip on post-cutoff dataset.

Constrained language generation is an increasingly relevant problem, and crosswords are a great benchmark in this regard. SoTA LLMs demonstrate the ability to solve crossword clues, and exploit constraints

from partially solved grids.

- ► This ability generalizes to post-cutoff datasets, and sound reasoning is often produced in support of answers.
- Our algorithm SweepClip can solve (straight) crosswords with the aid of LLMs. This is the first successful demonstration of crossword solving with an out-of-the-box foundational LLM.
- ► LLMs' inability to count and adhere to length constraints is a major hurdle requiring further investigation.

Clue solving task - LM is given the clue and the length of the answer. The models demonstrate improved performance with scale across datasets and, show remarkable improvement on the NYT dataset with Llama 3 70B, GPT 3.5 Turbo, Claude 3 Sonnet, and GPT-4-Turbo achieving 27.2%, 26.05%, 37.7% and 41.2% accuracy (EM), respectively (Fig. 3).

Hinted clue solving task - LLMs can successfully exploit constraints (letter patterns) to improve performance (Tab. 1) \Rightarrow they might be able to solve full crosswords.

We see no appreciable difference in performance on the post-cutoff dataset (see Tab. 3), suggesting that LLMs can generalize beyond potential contamination.

Human evaluation was performed to assess reasoning ability with cryptic crossword clues (3-shot CoT prompt + GPT-4-Turbo). We found that **74%** of the time GPT-4-Turbo provided a correct answer, it also gave **sound reasoning** (no logical or factual errors) in support of the an-

swer.

[1] Deits, R. github - rdeits/cryptics, 2015.

[2] Efrat, A., et al. Cryptonite: A cryptic crossword benchmark for extreme ambiguity in language. In EMNLP 2021. 2021. doi: 10.18653/v1/2021.emnlp-main.344.

- [3] Kulshreshtha, S., et al. Down and across: Introducing crosswordsolving as a new NLP benchmark. In ACL 2022 (long). 2022. doi: 10.18653/v1/2022.acl-long.189.
- [4] Littman, M. L., et al. A probabilistic approach to solving crossword puzzles. Artificial Intelligence, 134(1):23–55, 2002. doi:https:// doi.org/10.1016/S0004-3702(01)00114-X.
- [5] Rozner, J., et al. Decrypting cryptic crosswords: Semantically complex wordplay puzzles as a target for nlp. In NeurIPS 2021, vol. 34, 11409-11421. 2021.

[6] Sadallah, A. B., et al. Are Ilms good cryptic crossword solvers?, 2024. [7] Wallace, E., et al. Automated crossword solving. In ACL 2022 (long). 2022. doi:10.18653/v1/2022.acl-long.219.

> www.arxiv.org/2406.09043 espressovi.github.io